Skip to main content
Log in

Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Evaporation of a heated droplet of a colloid solution on structured surfaces is studied experimentally. Microscopic particles of TiO2 are added to water. The wettability of the structured surfaces varies in a wide range of the static contact angle of the droplet. Free convection in the droplet on the textured wall is compared with convection on a smooth surface. The textured wall alters both the wettability and the mean rate of convection in the liquid. Experiments aimed at studying the formation of a stable cluster of microparticles are performed on a textured surface made by means of 3D printing. The cluster is formed in the region of local heating of the droplet and consists of hexagonal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, p. 104–110.

    Article  Google Scholar 

  2. Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Design, 1998, vol. 15, pp. 143–152.

    Article  Google Scholar 

  3. Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.

    Article  Google Scholar 

  4. Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.

    Article  Google Scholar 

  5. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.

    Article  Google Scholar 

  6. Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Exp. Thermal Fluid Sci., 2016, vol. 70, pp. 389–396.

    Article  Google Scholar 

  7. Tonini, S., and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.

    Article  Google Scholar 

  8. Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.

    Article  Google Scholar 

  9. Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.

    Article  Google Scholar 

  10. Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.

    Article  Google Scholar 

  11. Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y., Tan, X., Guan, D., and Yu, Y., Fabrication of Nano-Structured Super-Hydrophobic Film on Aluminum by Controllable Immersing Method, Appl. Surf. Sci., 2012, vol. 258, pp. 5933–5937.

    Article  ADS  Google Scholar 

  12. Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surf. Sci., 2016, vol. 365, pp. 153–159.

    Article  ADS  Google Scholar 

  13. Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.

    Article  ADS  Google Scholar 

  14. Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.

    Article  Google Scholar 

  15. Min, T., Design and Fabrication of Super-Hydrophobic Surfaces by Laser Micro/Nano-Processing, PhD thesis, Tang Min, Singapore, 2012.

  16. Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.

    Article  ADS  Google Scholar 

  17. Römer, G., del Cerro, D.A., Sipkema, R.C.J., Groenendijk, M.N.W., and Huis in’t Veld, A.J., Ultra Short Pulse Laser Generated Surface Textures for Anti-Ice Applications in Aviation, Procs. of the 28th Int. Congr. on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, 2009, pp. 30–37.

  18. Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110.

  19. Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.

    Article  ADS  Google Scholar 

  20. Burdonskiy, I.N., Gol’tsov, A.Y., Leonov, A.G., Makarov, K.N., Timofeyev, I.S., and Yufa, V.N., Generation of Shock Waves due to Interaction of Power Laser Radiation with Polycrystalline Targets, VANT, 2013, vol. 36, pp. 8–18.

    Google Scholar 

  21. Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.

    Article  Google Scholar 

  22. Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., Batishcheva, K., and Ilenok, S.S., Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surf. Sci., 2019, vol. 469, pp. 974–982.

    Article  ADS  Google Scholar 

  23. Misyura, S.Y., The Dependence of Drop Evaporation Rate and Wettability on Corrosion Kinetics, Colloids Surf. A, 2021, vol. 610, p. 125735.

    Article  Google Scholar 

  24. Misyura, S.Y., Different Modes of Heat Transfer and Crystallization in a Drop of NaCl Solution: The Influence of Key Factors on the Crystallization Rate and Heat Transfer Coefficient, Int. J. Therm. Sci., 2021, vol. 159, p. 106602.

    Article  Google Scholar 

  25. Hu, H., and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.

    Article  Google Scholar 

  26. Hu, H., and Larson, R.G., Marangoni Effect Reverses Coffee-ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.

    Article  Google Scholar 

  27. Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.

    Article  Google Scholar 

  28. Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.

    Article  Google Scholar 

  29. Misyura, S.Y., Convection in a Droplet Blown by Gas Flow, Appl. Thermal Engin., 2020, vol. 165, p. 114536.

    Article  Google Scholar 

  30. Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.

    Article  Google Scholar 

  31. Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.

    Article  Google Scholar 

  32. Misyura, S.Y., Evaporation of Aqueous Solutions of LiBr and LiCl Salts, Int. Comm. Heat Mass Transfer, 2020, vol. 117, p. 104727.

    Article  Google Scholar 

  33. Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.

    Article  Google Scholar 

  34. Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids and Surfaces A, 2019, vol. 572, pp. 37–46.

    Article  Google Scholar 

  35. Kreizer, M., Ratner, D., and Liberzon, A., Real Time Image Processing for Particle Tracking Velocimetry, Exp. Fluids, 2010, vol. 48, pp. 105–110.

    Article  ADS  Google Scholar 

  36. Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol., 1997, vol. 8, pp. 1379–1392.

    Article  ADS  Google Scholar 

  37. Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Thermal Engin., 2017, vol. 127, pp. 141–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Misyura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Bilsky, A.V., Morozov, V.S. et al. Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall. J. Engin. Thermophys. 30, 654–660 (2021). https://doi.org/10.1134/S1810232821040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040081

Navigation