Skip to main content
Log in

Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents a brief analysis of current achievements and key issues in the field of heat transfer and critical heat flux enhancement during boiling of cryogenic liquids and freons under various heat release laws via micro-structuring of the heat-generating surface. A review of new experimental data on the efficiency of heat transfer and critical heat flux enhancement during pool boiling via new micro-structured capillary-porous coatings created by plasma sputtering and selective laser melting/sintering (3D printing) is presented. The results of analysis of the efficiency of heat transfer and critical heat flux during boiling on heat-generating surfaces with micro-textures of different shapes and micro-profiling created by micro-deforming cutting are presented. New results obtained during nitrogen boiling under various hydrodynamical conditions on the mechanisms of sharp increase in the rate of non-stationary cooling of plates with new structured capillary-porous or low-heat-conductivity coatings with certain parameters are discussed. New results on the degree of heat transfer enhancement during boiling of liquids on micro-structured surfaces modified by the method of micro-arc oxidation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

REFERENCES

  1. Grigoriev, V.A., Pavlov, Yu.M., and Ametistov, E.V., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Moscow: Energiya, 1977.

    Google Scholar 

  2. Kirichenko, Yu.A. and Rusanov, K.V., Teploobmen v gelii-I v usloviyakh svobodnogo dvizheniya (Heat Transfer in Helium-I under Conditions of Free Movement), Kiev: Naukova dumka, 1983.

    Google Scholar 

  3. Belyakov, V.P., Kriogennaya tekhnika i tekhnologiya (Cryogenic Engineering and Technology), Moscow: Energoizdat, 1982.

    Google Scholar 

  4. Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii kriogennykh zhidkostei (Heat Transfer during Boiling of Cryogenic Liquids), Kiev: Naukova dumka, 1987.

    Google Scholar 

  5. Arkharov, A.M., Belyakov, V.P., and Mikulin, E.I., Kriogennye systemy (Cryogenic Systems), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  6. Barron, R.F., Cryogenic Systems, New York: Oxford University Press, 1989.

    Google Scholar 

  7. Miropol’skii, Z.L., Eroshenko, V.M., and Filimonov, S.S., Gidrodinamika i teploobmen v sverkhprovodnikovykh ustroistvakh (Hydrodynamics and Heat Transfer in Superconducting Devices), Moscow: Nauka, 1990.

    Google Scholar 

  8. Chato, J.C., Cryogenic Heat Transfer a Survey of Recent Developments, in Applications of Cryogenic Technology. Applications of Cryogenic Technology, vol. 10, Kelley, J.P., Ed., Boston, MA: Springer, pp. 139–161, 1991; doi.org/10.1007/978-1-4757-9232-4_12.

  9. Altov, V.A., Zenkevich, V.B., Kremlev, M.G., and Sychev, V.V., Stabilizatsiya sverkhprovodyaschikh magnitnykh system (Stabilization of Superconducting Magnetic Systems), Moscow: Energoatomizdat, 1984.

    Google Scholar 

  10. Gurevich, A.V., Mints, R.G., and Rakhmanov, A.L., Fizika kompozitnykh sverkhpovodnikov (Physics of Composite Superconductors), Moscow: Nauka, 1987.

    Google Scholar 

  11. Glebov, I.A., Shakhtarin, V.N., and Antonov, Yu.F., Problema vvoda toka v sverkhprovodnikovye ustroistva (The Problem of Current Input into Superconducting Devices), Leningrad: Nauka, 1985.

    Google Scholar 

  12. Kirichenko, Yu.A., Kozlov, S.M., Rusanov, K.V., Seregin, V.E., Troyanov, O.M., and Tyurina, E.G., Teploobmen pri kipenii azota i voprosy okhlazhdeniya vysokotemperaturnykh sverkhprovodnikov (Heat Transfer at Nitrogen Boiling and Issues of Cooling of High-Temperature Superconductors), Kiev: Naukova dumka, 1992.

    Google Scholar 

  13. Klimenko, V.V. and Sudarchikov, A.M., Investigation of Forced Flow Boiling of Nitrogen in a Long Vertical Tube, Cryogenics, 1983, vol. 23, no. 7, pp. 379–385; DOI: 10.1016/0011-2275(83)90092-9.

    Article  ADS  Google Scholar 

  14. Sudarchikov, A.M., Hydrodynamic Instability in a Boiling Nitrogen Flow, Vestnik MEI, 2005, vol. 4, pp. 33–39.

    Google Scholar 

  15. Sudarchikov, A.M., Unstable Flow Regimes during Boiling in a Channel: Occurrence, Characteristics, Influence on Heat Transfer and Crisis, Doctoral (Eng.) Dissertation, Moscow, 2007, p. 320.

  16. Fujikura HTS Wire Properties; http://www.fujikura.co.jp/eng/products/newbusiness/superconductors/ 01/2050256_12808.html.

  17. Statra, Y., Menana, H., Belguerras, L., and Douine, B., A Volume Integral Approach for the Modelling and Design of HTS Coils, Int. J. Comput. Math. Electr. Electron. Eng., 2019, vol. 38, no. 4, pp. 1133–1140.

    Article  Google Scholar 

  18. Haran, K.S., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., Bray, J.W., Masson, P., and Stautner, E.W., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol., 2017, vol. 30, no. 12, p. 41; doi.org/10.1088/1361-6668/aa833e.

    Article  Google Scholar 

  19. Dezhin, D., Ilyasov, R., Kozub, S., Kovalev, K., and Verzhbitsky, L., Synchronous Motor with HTS-2G Wires, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032011.

  20. Kovalev, K., Kovalev, L., Poltavets, V., Samsonovich, S., Ilyasov, R., Levin, A., and Surin, M., Synchronous Generator with HTS-2G Field Coils for Windmills with Output Power 1 MW, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032023; DOI: 10.1088/1742-6596/507/3/032023.

  21. Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, pp. 1–5, p. 5201905; DOI: 10.1109/TASC.2017.2787180.

    Article  Google Scholar 

  22. Kovalev, K.L., Penkin, V.T., Larionov, A.E., Modestov, K.A., Ivanov, N.S., Tulinova, E.E., Dubensky, A.A., Verzhbitsky, L.G., and Kozub, S.S., Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets, IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 3, p. 7405291.

    Article  Google Scholar 

  23. Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys.: Conf. Ser., 2020, vol. 1559, p. 012137; DOI: 10.1088/1742-6596/1559/1/012137.

    Article  Google Scholar 

  24. Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express, 2019, vol. 6, no. 7, p. 076001; doi.org/10.1088/2053-1591/ab18be.

    Article  ADS  Google Scholar 

  25. Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, p. 8239830; DOI: 10.1109/TASC.2017.2787180.

    Article  Google Scholar 

  26. Surtaev, A.S., Serdyukov, V.S, and Pavlenko, A.N., Nanotechnologies for Thermophysics: Heat Transfer and Crisis Phenomena at Boiling, Nanotechnol. Russia, 2016, vol. 11, pp. 696–715; doi.org/10.1134/ S1995078016060197.

    Article  Google Scholar 

  27. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, no. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.

    Article  Google Scholar 

  28. Ahn, H.S. and Kim, M.H., A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification, J. Heat Transfer, 2012, vol. 134, no. 2, pp. 024001-1–024001-13; DOI: 10.1115/1.4005065.

    Article  Google Scholar 

  29. Shojaeian, M. and Kosar, A., Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 63, pp. 45–73; DOI: 10.1016/j.expthermflusci.2014.12.016.

    Article  Google Scholar 

  30. Moria, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557; doi.org/10.1016/ j.ijheatmasstransfer.2017.01.090.

    Article  Google Scholar 

  31. Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.

    Article  ADS  Google Scholar 

  32. Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.

    Article  Google Scholar 

  33. Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.

    Article  Google Scholar 

  34. Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.-C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. J. Heat Mass Transfer, 2020, vol. 119, no. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.

  35. Liang, G.I. and Mudawar, I., Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes, Int. J. Heat Mass Transfer, 2020, vol. 146, no. 118864; doi.org/10.1016/j.ijheatmasstransfer.2019.118864.

    Article  Google Scholar 

  36. Zing, C., Mahjoob, S., and Vafai, K., Analysis of Porous Filled Heat Exchangers for Electronic Cooling, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 268–276; doi.org/10.1016/j.ijheatmasstransfer.2018.12.067.

    Article  Google Scholar 

  37. Borjigin, S., Zhang, S., Ma, T., Zeng, M., and Wang, Q., Performance Enhancement of Cabinet Cooling System by Utilizing Cross-Flow Plate Heat Exchanger, Energy Conversion and Management, 2020, vol. 213, no. 112854; doi.org/10.1016/j.enconman.2020.112854.

    Article  Google Scholar 

  38. Colangelo, G., Favale, E., Milanese, M., de Risi, A., and Laforgia, D., Cooling of Electronic Devices: Nanofluids Contribution, Appl. Therm. Engin., 2017, vol. 127, pp. 421–435; doi.org/10.1016/j.applthermaleng.2017.08.042.

    Article  Google Scholar 

  39. Xie, W., Lv, X., Liu, D., Li, L., and Yao, W. Numerical Investigation of Flow Boiling in Manifold Microchannel-Based Heat Exchangers, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120493; doi.org/ 10.1016/j.ijheatmasstransfer.2020.120493.

    Article  Google Scholar 

  40. Wu, Z., Cao, Z., and Sundén, B., Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition, Appl. Energy, 2019, vol. 249, pp. 286–299; doi.org/10.1016/j.apenergy.2019.04.160.

    Article  Google Scholar 

  41. Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/j.ijheatmasstransfer.2020.119622.

    Article  Google Scholar 

  42. Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.

    Article  Google Scholar 

  43. Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Therm. Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.

    Article  Google Scholar 

  44. Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.

    Article  Google Scholar 

  45. Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.

    Article  Google Scholar 

  46. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.

    Article  Google Scholar 

  47. Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.

    Article  Google Scholar 

  48. Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; doi.org/10.3791/55387.

    Article  Google Scholar 

  49. Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement When Boiling on Finned Surfaces, J. Phys.: Conf. Ser. (APTPH XVI 2020), 2021, vol. 1867, p. 012024; DOI: 10.1088/1742-6596/1867/1/ 012024.

    Article  Google Scholar 

  50. Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.

    Article  Google Scholar 

  51. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.

    Article  Google Scholar 

  52. Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.

    Article  Google Scholar 

  53. Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.

    Article  ADS  Google Scholar 

  54. Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Reps., 2018, vol. 8, no. 7461, pp. 1–8; doi.org/10.1038/s41598-018-25843-5.

    Article  Google Scholar 

  55. Tran, N., Sajjad, U., Lin, R., and Wang, C.-C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.

    Article  Google Scholar 

  56. Cao, Z., Wu, Z., Pham, A.-D., Yang, Y., Abbood, S., and Falkman, P., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.

    Article  Google Scholar 

  57. Manetti, L.L.G., Ribatski, R.R., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2019, p. 110025; doi.org/10.1016/j.expthermflusci.2019.110025.

    Article  Google Scholar 

  58. McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; doi.org/10.1109/STHERM.1991.152914.

  59. Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509-516; doi.org/10.1115/ 1.1288708.

    Article  Google Scholar 

  60. Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/j.ijheatmasstransfer.2007.02.003.

    Article  Google Scholar 

  61. Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.

    Article  Google Scholar 

  62. Chu, K.H., Joung, Y.S., Enright, R., Buie, C.R., and Wang, E.N., Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement, Appl. Phys. Lett., 2013, vol. 102, no. 15; doi.org/10.1063/ 1.4801811.

    Article  ADS  Google Scholar 

  63. Suna, Y., Shuaia, M., Zhanga, S., Tanga, Y., Chena, G., and Zhonga, G., Hierarchically 3D-Textured Copper Surfaces with Enhanced Wicking Properties for High-Power Cooling, Appl. Therm. Engin., 2020, vol. 178, p. 115650; doi.org/10.1016/j.applthermaleng.2020.115650.

    Article  Google Scholar 

  64. Li, Q., Lan, Z., Chun, J., Wen, R., and Ma, X., Composite Porous Surfaces of Microcavities for Enhancing Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2021, vol. 177, p. 121513; doi.org/10.1016/j.ijheatmasstransfer.2021.121513.

    Article  Google Scholar 

  65. Roizen, L.I., Rachitskii, D.G., Rubin, I.R., Vertogradskaya, L.M., Yudina, L.A., and Pypkina, M.B., Heat-Transfer with Boiling of Nitrogen and Freon-113 on Porous Metallic Coatings, High Temp., 1982, vol. 20, no. 2, pp. 264–270.

    Google Scholar 

  66. Scurlock, R.G., Enhanced Boiling Heat Transfer Surfaces, Cryogenics, 1995, vol. 35, no. 4, pp. 233–237.

    Article  ADS  Google Scholar 

  67. Surtaev, A.S., Pavlenko, A.N., Kalita, V.I., Kuznetsov, D.V., Komlev, D.I., Radyuk, A.A., and Ivannikov, A.Yu., The Influence of Three-Dimensional Capillary-Porous Coatings on Heat Transfer at Liquid Boiling, Tech. Phys. Lett., 2016, vol. 42, no. 4, pp. 391–394; doi.org/10.1134/S106378501604026X.

    Article  ADS  Google Scholar 

  68. Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Ivannikov, A., and Radyuk, A., Structured Capillary-Porous Coatings for Enhancement of Heat Transfer at Pool Boiling, Appl. Therm. Engin., 2018, vol. 133, pp. 532–542; doi.org/10.1016/j.applthermaleng.2018.01.051.

    Article  Google Scholar 

  69. Kuznetsov, D.V., Pavlenko, A.N., Radyuk, A.A., Komlev, D.I., and Kalita, V.I., Features of Heat Transfer During Pool Boiling of Nitrogen on Surfaces with Capillary-Porous Coatings of Various Thicknesses, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 375–387; doi.org/10.1134/S1810232820030017.

    Article  Google Scholar 

  70. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study of Heat Transfer and Critical Heat Flux During Pool Boiling of Nitrogen on Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, 341–349.

    Article  Google Scholar 

  71. Tsukamoto, O. and Uyemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryogenic Eng., 1980, vol. 25, pp. 476–482; doi.org/10.1007/978-1-4613-9856-1_57.

  72. Kondaurova, L.P., Boiling of Nitrogen at Stepwise Heat Release at Different Pressures, Izv. SO AN SSSR. Ser. Tech. Nauk, 1988, vol. 21, no. 6, pp. 102–103.

    Google Scholar 

  73. Tsoi, A.N. and Lutset, M.O., Boiling of Helium-II, Helium-I and Nitrogen at Nonstationary Heat Release, J. Eng. Phys. Thermophys., 1986, vol. 51, no. 1, pp. 5–9; doi.org/10.1007/BF00871351.

    Article  Google Scholar 

  74. Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117.

    Google Scholar 

  75. Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Procs. of the Third Int. Conf. on Multiphase Flow, ICMF-98, Lyon, France, 1998, no. 4. pp. 3–5, Prod. By File M, www.filem.com.

  76. Pavlenko, A.N., Zhukov, V.E., and Starodubtseva, I.P., Propagation of Selfsustained Evaporation Fronts at Step-Wise Heat Generation and Crisis Phenomena at Pool Boiling, Computat. Thermal Sci., 2011, vol. 3, no. 5, pp. 419–426; doi.org/10.1615/ComputThermalScien.2011004011.

    Article  Google Scholar 

  77. Artemyev, B.V., Ivanovsky, M.N., Litvinova, L.A., and Sviridenko, I.P., Modes of Degraded Heat Transfer of a Shock-Heated Conductor in a Large Volume of Liquid Nitrogen, High Temp., 1979, vol. 17, no. 16, pp. 1259–1264.

    Google Scholar 

  78. Sinha, D.N., Brodie, L.C., Semura, J.S., and Young, F.M., Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen, Cryogenics, 1979, no. 4, pp. 225–230; doi.org/10.1016/ 0011-2275(79)90023-7.

    Article  ADS  Google Scholar 

  79. Yanagi, H. and Akiyama, M., Transient Heat Transfer in Liquid Helium and Nitrogen, J. Faculty Eng., Univ. Tokyo, 1981, vol. 36, no. 6, pp. 233–248.

    Google Scholar 

  80. Pavlenko, A.N. and Chekhovich, V.Yu., Critical Heat Flux at Transient Heat Generation and Dynamics Change of Boiling Regimes, Low Temp. Phys., 1990, vol. 16, no. 4, pp. 510–512.

    Google Scholar 

  81. Roth, E.W., Bodegom, E., Brodie, L.G., and Semura, J.S., Transient Heat Transfer in Liquid Nitrogen, Adv. Cryogenic Eng., 1990, vol. 35, pp. 447–452; doi.org/10.1007/978-1-4613-0639-9_53.

  82. Pavlenko, A.N. and Chekhovich, V.Yu., Heat Transfer Crisis at Transient Heat Release, Russ. J. Engin. Thermophys., 1991, vol. 1, no. 1, pp. 73–92.

    Google Scholar 

  83. Pavlenko, A.N., Starodubtseva, I.P., and Chekhovich, V.Yu., Calculating Model for Critical Heat Flux and Dynamical Characteristics of Film Boiling Regime Development at Transient Heat Generation on Nonisothermal Surfaces in Cryogenic Liquids, Cryogenics, 1992, vol. 32, no. 1, pp. 241–244; doi.org/10.1016/ 0011-2275(92)90153-2.

    Article  ADS  Google Scholar 

  84. Drach, V., Sack, N., and Fricke, J., Transient Heat Transfer from Surfaces of Defined Roughness into Liquid Nitrogen, Int. J. Heat Mass Transfer, 1996, vol. 39, no. 9, pp. 1953–1961; doi.org/10.1016/0017-9310(95)00267-7.

    Article  Google Scholar 

  85. Drach, V. and Fricke, J., Transient Heat Transfer from Smooth Surfaces into Liquid Nitrogen, Cryogenics, 1996, vol. 36, no. 4, pp. 263–269; doi.org/10.1016/0011-2275(96)88785-6.

    Article  ADS  Google Scholar 

  86. Pavlenko, A.N., Transitional Processes and Crisis Phenomena in Boiling of Cryogenic Liquids, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 145–164; doi.org/10.1007/978-94-010-0099-4_9.

  87. Pavlenko, A.N. and Chekhovich, V.Yu., Interconnection Between Dynamics of Liquid Boiling-up and Heat Transfer Crisis for Nonstationary Heat Release, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 175–187; doi.org/10.1134/S1810232807030101.

    Article  Google Scholar 

  88. Surtaev, A.S., Pavlenko, A.N., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyuk, A.A., Heat Transfer and Crisis Phenomena at Pool Boiling of Liquid Nitrogen on the Surfaces with Capillary-Porous Coatings, Int. J. Heat Mass Transfer, 2017, vol. 108, part A, pp. 146–155; doi.org/ 10.1016/j.ijheatmasstransfer.2016.11.100.

    Article  Google Scholar 

  89. Pavlenko, A.N., Kuznetsov, A.N., and Surtaev, A.S., Experimental Study of the Influence of Structured Capillary-Porous Coatings on the Dynamics of Development of Transient Processes and the Crisis Phenomena at Stepwise Heat Release, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 285–293; doi.org/10.1134/ S1810232818030037.

    Article  Google Scholar 

  90. Tsoi, A.N. and Pavlenko, A.N., Enhancement of Transient Heat Transfer at Boiling on a Plate Surface with Low Thermoconductive Coatings, Thermophys. Aeromech., 2015, vol. 22, no. 6, pp. 707–712; doi.org/10.1134/S0869864315060062.

    Article  ADS  Google Scholar 

  91. Pavlenko, A.N., Chekhovich, V.Yu., and Starodubtseva, I.P., Study of Propagation Dynamics for the Site of Film Regime Boiling, Russ. J. Engin. Thermophys., 1994, vol. 4, no. 4, pp. 323–347.

    Google Scholar 

  92. Pavlenko, A.N. and Starodubtseva, I.P., Investigation of the Development Dynamics of Semi-Infinite and Local Film Boiling Sites, Thermophys. Aeromech., 1998, vol. 5, no. 2, pp. 216–228.

    Google Scholar 

  93. Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Teploobmen i krizisnye yavleniya v stekayuschikh plenkakh zhidkosti pri isparenii i kipenii (Heat Transfer and Crisis Phenomena in Falling Films of Liquid under Evaporation and Boiling), Novosibirsk: SO RAN, 2016.

    Google Scholar 

  94. Alekseenko, S.V., Nazarov, A.D., Pavlenko, A.N., Serov, A.F., and Chekhovich, V.Yu., The Flow of Cryogenic Liquid Film over a Vertical Surface, Thermophys. Aeromech., 1997, vol. 4, no. 3, pp. 307–318.

    Google Scholar 

  95. Pavlenko, A.N., Volodin, O.A., and Surtaev, A.S., Hydrodynamics in Falling Liquid Films on Surfaces with Complex Geometry, Appl. Therm. Engin., 2017, vol. 114, pp. 1265–1274; doi.org/10.1016/ j.applthermaleng.2016.10.013.

    Article  Google Scholar 

  96. Yoshiyuki, I. and Xi, C., Development of Numerical Prediction of Liquid Film Flows on Packing Elements in Absorbers, IHI Engin. Rev., 2011, vol. 44, pp. 1–8.

    Google Scholar 

  97. Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19; doi.org/10.1134/S1810232818010010.

    Article  Google Scholar 

  98. Pavlenko, A.N. and Lel’, V.V., Heat Transfer and Crisis Phenomena in Falling Films of Cryogenic Liquid, Russ. J. Engin. Thermophys., 1997, vol. 7, nos. 3/4, pp. 177–210.

    Google Scholar 

  99. Pavlenko, A.N. and Lel’, V.V., Evaporating and Boiling of Falling Films of Cryogenic Liquid: Heat Transfer and Development of Dry Spots, in Procs. of the Int. Conf. on Compact Heat Exchangers for the Process Industries, 18–23 July, 1999, Banff, Canada, 1999, pp. 319–327.

  100. Pavlenko, A.N., Hydrodynamics and Heat Transfer in Boiling and Evaporation in Cryogenic Falling Films and Applications, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 181–200; doi.org/10.1007/978-94-010-0099-4_11.

  101. Matsekh, A.M. and Pavlenko, A.N., Heat Transfer and Crisis Phenomena in the Falling Films of Cryogenic Liquid, Thermophys. Aeromech., 2005, vol. 12, no. 1, pp. 99–112.

    Google Scholar 

  102. Pavlenko, A.N., Matsekh, A.M., Pecherkin, N.I., Kneer, R., Lel, V.V., and Surtaev, A.S., Heat Transfer and Crisis Phenomena with Intense Boiling in the Falling Wave Liquid Films, Thermophys. Aeromech., 2006, vol. 13, no. 1, pp. 85–96; doi.org/10.1134/S1531869906010096.

    Article  ADS  Google Scholar 

  103. Hesselgreaves, J.E., Compact Heat Exchangers, Selection, Design and Operation, Amsterdam: Pergamon, 2001.

    Google Scholar 

  104. Thome, J.R., Engineering Data Book III, Wolverine Tube, 2004.

  105. Christians, M. and Thome, J.R., Falling Film Evaporation on Enhanced Tubes, Part 1: Experimental Results for Pool Boiling, Onset-of-Dryout and Falling Film Evaporation, Int. J. Refrig., 2012, vol. 35, no. 2, pp. 300–312; doi.org/10.1016/j.ijrefrig.2011.10.020.

    Article  Google Scholar 

  106. Popov, I.A., Makhyanov, H.M., and Gureev, V.M., Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena (Physical Basis and Industrial Application of Heat Transfer Intensification), Kazan: Tsentr innovatsionnykh tekhnologii, 2009.

    Google Scholar 

  107. Zubkov, N.N., Ovchinnikov, A.I., and Sedov, A.V., Implementation of the Method of Deforming Cutting with Rotary Cutters. Determination of Geometric Parameters of the Processing Zone, Izv. Vuzov. Mashinostr., 2012, no. 1, pp. 67–74.

  108. Popov, I.A., Zubkov, N.N., Kaskov, S.I., and Shchelchkov, A.V., Heat Transfer During Liquid Boiling on Microstructured Surfaces. Part 1: Heat Transfer During Water Boiling, Thermal Engin., 2013, no. 60, pp. 157–165; doi.org/10.1134/S004060151303004X.

    Article  ADS  Google Scholar 

  109. Popov, I.A. and Shchelchkov, A.V., Boiling of Various Liquids on Microstructured Surfaces, Engin. Phys. J., 2014, vol. 87, no. 6, pp. 1362–1374; doi.org/10.1007/s10891-014-1146-6.

    Article  Google Scholar 

  110. Fagerholm, N.E., Ghazanfari, A.R., Kivioja, K., and Järvinen, E., Boiling Heat Transfer Performance of Plain and Porous Tubes in Falling Film Flow of Refrigerant R114, Wärme- und Stoffübertragung, 1987, vol. 21, pp. 343–353; doi.org/10.1007/bf01376289.

    Article  ADS  Google Scholar 

  111. Gambaryan-Roisman, T. and Stephan, P., Heat Transfer Analysis of Falling Film Evaporation on Structured Surfaces, in Procs. of the 12th Int. Heat Transfer Conf., Grenoble, France, 2002, pp. 449–454; doi.org/10.1615/IHTC12.2530.

  112. Salvagnini, W. and Taqueda, M.A., Falling-Film Evaporator with Film Promoters, Ind. Eng. Chem. Res., 2004, vol. 43. no. 21, pp. 6832–6835; doi.org/10.1021/ie0307636.

    Article  Google Scholar 

  113. Helbig, K., Nasarek, R., Gambaryan-Roisman, T., and Stephan, P., Effect of Longitudinal Minigrooves on Flow Stability and Wave Characteristics of Falling Liquid Films, J. Heat Transfer, 2009, vol. 131, no. 1, pp. 011601–011608; doi.org/10.1115/1.2993539.

    Article  Google Scholar 

  114. Klemm, E., Mathivanan, G., Schwarz, T., and Schirrmeister, S., Evaporation of Hydrogen Peroxide with a Microstructured Falling Film, Chem. Engin. Processing: Process Intensif., 2011, vol. 50, no. 10, pp. 1010–1016; doi.org/10.1016/j.cep.2011.05.020.

    Article  Google Scholar 

  115. Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyak, A.A., Experimental Study of Rewetting of a Superheated Plate with Structured Capillary-Porous Coating by Flowing Liquid Film, High Temp., 2018, vol. 56, no. 3, pp. 404–409; doi.org/10.7868/ S0040364418030158.

    Article  Google Scholar 

  116. Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158; doi.org/10.1016/j.ijheatmasstransfer.2015.06.050.

    Article  Google Scholar 

  117. Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Crisis Phenomena at the Film Flows of Freon Mixture over Vertical Structured Surfaces, Heat Transfer Engin., 2016, vol. 37, nos. 3/4, pp. 257–268; doi.org/10.1080/01457632.2015.1052657.

    Article  ADS  Google Scholar 

  118. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., Stepanov, K.A., and Zubkov, N.N., Influence of the Type of Wall Microstructuring on Heat Transfer During Boiling in Flowing Films of a Low-Viscosity Liquid, Thermal Proc. Engin., 2019, vol. 11, no. 1, pp. 16–23.

    Google Scholar 

  119. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, pp. 119722-1–119722-10; doi.org/10.1016/j.ijheatmasstransfer.2020.119722.

    Article  Google Scholar 

  120. Read, N., Wang, W., Essa, K., and Attallah, M.M., Selective Laser Melting of AlSi10Mg Alloy: Process Optimization and Mechanical Properties Development, Mater. Design, 2015, vol. 65, pp. 417–424; doi.org/10.1016/j.matdes.2014.09.044.

    Article  Google Scholar 

  121. Wong, K.K., Ho, J.Y., Leong, K.C., and Wong, T.N., Fabrication of Heat Sinks by Selective Laser Melting for Convective Heat Transfer Applications, Virt. Phys. Prototyp., 2016, vol. 11, pp. 159–165; doi.org/10.1080/17452759.2016.1211849.

    Article  Google Scholar 

  122. Ho, J.Y., Wong, K.K., Leong, K.C., and Wong, T.N., Convective Heat Transfer Performance of Airfoil Heat Sinks Fabricated by Selective Laser Melting, Int. J. Therm. Sci., 2017, vol. 114, pp. 213–228; doi.org/10.1016/j.ijthermalsci.2016.12.016.

    Article  Google Scholar 

  123. Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63; doi.org/10.1016/ j.ijheatmasstransfer.2017.12.148.

    Article  Google Scholar 

  124. Ho, J.Y., Wong, K.K., and Leong, K.C., Saturated Pool Boiling of FC-72 from Enhanced Surfaces Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 107–121; doi.org/10.1016/ j.ijheatmasstransfer.2016.03.073.

    Article  Google Scholar 

  125. Kang, Z. and Wang, L., Boiling Heat Transfer on Surfaces with 3D-Printing Microstructures, Exp. Thermal Fluid Sci., 2018, vol. 93, pp. 165–170; doi.org/10.1016/j.expthermflusci.2017.12.021.

    Article  Google Scholar 

  126. Gogonin, I.I., Heat Transfer and Hydrodynamic Characteristics at Evaporation of Liquid Film Irrigating a Horizontal Bundle of Finned Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012062; doi.org/10.1088/1742-6596/1369/1/012062.

    Article  Google Scholar 

  127. Gogonin, I.I., Heat Transfer at Boiling of Liquid Film Irrigating a Horizontal Bundle of Rough Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012061; doi.org/10.1088/1742-6596/1369/ 1/012061.

    Article  Google Scholar 

  128. Zhao, C.Y., Jin, P.H., Ji, W.T., He, Y.L., and Tao, W.Q., Experimental Investigations of R134a and R123 Falling Film Evaporation on Enhanced Horizontal Tube, Int. J. Refrig., 2017, vol. 75, pp. 190–203; doi.org/10.1016/j.ijrefrig.2016.12.013.

    Article  Google Scholar 

  129. Zhao, C.Y., Ji, W.T., Jin, P.H., Zhong, Y.J., and Tao, W.Q., Experimental Study of the Local and Average Falling Film Evaporation Coefficients in a Horizontal Enhanced Tube Bundle Using R134a, Appl. Therm. Engin., 2018, vol. 129, pp. 502–511; doi.org/10.1016/j.applthermaleng.2017.09.135.

    Article  Google Scholar 

  130. Jin, P.H., Zhao, C.Y., Ji, W.T., and Tao, W.Q., Experimental Investigation of R410A and R32 Falling Film Evaporation on Horizontal Enhanced Tubes, Appl. Therm. Engin., 2018, vol. 137, pp. 739–748; doi.org/10.1016/j.applthermaleng.2018.03.060.

    Article  Google Scholar 

  131. Ji, W.T., Zhao, C.Y., Zhang, D.C., Yoshioka, S., He, Y.L., and Tao, W.Q., Effect of Vapor Flow on the Falling Film Evaporation of R134a outside a Horizontal Tube Bundle, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1171–1181; doi.org/10.1016/j.ijheatmasstransfer.2015.09.023.

    Article  Google Scholar 

  132. Zhao, C.Y., Ji, W.T., Jin, P.H., and Tao, W.Q., Cross Vapor Stream Effect on Falling Film Evaporation in Horizontal Tube Bundle Using R134a, Heat Transfer Engin., 2017, vol. 39, nos. 7/8, pp. 1–14; doi.org/10.1080/01457632.2017.1327296.

    Article  ADS  Google Scholar 

  133. Zhao, C.Y., Ji, W.T., Jin, P.H., Yoshioka, S., and Tao, W.Q., Effect of Downward Vapor Stream on Falling Film Evaporation of R134a in a Tube Bundle, Int. J. Refrig., 2018, vol. 89, pp. 112–121; doi.org/10.1016/j.ijrefrig.2018.02.027.

    Article  Google Scholar 

  134. Bock, B.D., Bucci, M., Markides, C.N., Thome, J.R., and Meyer J.P., Falling Film Boiling of Refrigerants over Nanostructured and Roughened Tubes: Heat Transfer, Dryout and Critical Heat Flux, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120452; doi.org/10.1016/j.ijheatmasstransfer.2020.120452.

    Article  Google Scholar 

  135. Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in Flowing Films on a Package of Horizontal Pipes with MDO Coating, J. Phys.: Conf. Ser. (STSXXXVI), 2020, vol. 1677, pp. 012091-1–12091-7; DOI: 10.1088/1742-6596/1677/1/012091.

    Article  Google Scholar 

  136. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, accepted for publication.

  137. Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Dong, K Li., Device for Microelectric Arc Oxidation, RF patent 2248416 C1, 2005.

  138. Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Films of Liquid Under Conditions of Unsteady-State Heat, High Temp., 2007, vol. 45, no. 6, pp. 905–916; DOI: 10.1134/S0018151X07060144; doi.org/10.1134/S0018151X07060144.

    Article  Google Scholar 

  139. Pavlenko, A.N. Koverda, V.P., Skokov, V.N., Reshetnikov, A.V., Vinogradov, A.V., and Surtaev, A.S., Dynamics of Transition Processes and Structure Formation in Critical Heat–Mass Transfer Regimes during Liquid Boiling and Cavitation, J. Eng. Therm., 2009, vol. 18, no. 1, pp. 20–38; doi.org/10.1134/ S1810232809010044.

    Article  Google Scholar 

  140. Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Unsteady-State Heat Transfer in Falling Wavy Films of Liquid, Technical Physics Letters, 2014, vol. 40, no.12, pp. 1039–1041; doi.org/10.1134/ S1063785014120062.

    Article  ADS  Google Scholar 

  141. Pavlenko, A.N., Surtaev, A.S., Tsoi, A.N., Starodubtseva, I.P., and Serdyukov, V.S., Dynamics of Rewetting of the Superheated Surface by the Liquid Film Flowing down, High Temp., 2014, vol. 52, no. 6, pp. 886–894; doi.org/10.7868/S0040364414060118.

    Article  Google Scholar 

  142. Starodubtseva, I.P. and Pavlenko, A.N., Numerical Model for Quenching of Hot Surface by the Falling Cryogenic Liquid Film, Proc. of the 1st Thermal and Fluid Engineering Summer Conference (TFESC-15), New York City, USA, 2015; doi.org/10.1615/TFESC1.cmd.013191.

  143. Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., and Serdyukov, V.S., Effect of a Low-Thermal-Conductive Coating on the Dynamics of Rewetting of Overheated Plate by Falling Liquid Film, High Temp., 2016, vol. 54, no. 3, pp. 370–376; doi.org/10.7868/S0040364416020149.

    Article  Google Scholar 

  144. Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Heat Transfer and Determination of Critical Heat Fluxes at Nonsteady Heat Generation in Falling Wavy Liquid Films, Int. J. Heat Mass Transfer, 2017, vol. 105, pp. 648–654; doi.org/10.1016/j.ijheatmasstransfer.2016.09.017.

    Article  Google Scholar 

  145. Starodubtseva, I.P., Pavlenko, A.N., and Surtaev, A.S., Heat Transfer During Quenching of High Temperature Surface by the Falling Cryogenic Liquid Film, Int. J. Thermal Sciences, 2017, vol. 114, no. 4, pp. 196–204; doi.org/10.1016/j.ijthermalsci.2016.12.015.

    Article  Google Scholar 

  146. Starodubtseva, I.P. and Pavlenko, A.N., Quenching by Falling Cryogenic Liquid Film of Extremely Overheated Plate with Structured Capillary-Porous Coating, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 294–302; DOI: 10.1134/S1810232818030049.

    Article  Google Scholar 

  147. Chernyavskiy, A.N. and Pavlenko, A.N., Numerical Simulation of Wave Formation and Heat Transfer in Falling Liquid Films on Unsteady Heat Release, J. Eng. Therm., 2020, vol. 29, no. 1, pp.181–185; DOI: 10.1134/S1810232820010130.

    Article  Google Scholar 

  148. Kuznetsov, D.V. and Pavlenko, A.N., Effect of Structuring by Deformational Cutting on Heat Transfer and Dynamics of Transient Cooling Processes with Liquid Film Flowing onto a Copper Plate, J. Eng. Therm., 2020, vol. 29, no. 4, pp. 531–541; DOI: 10.1134/S1810232820040013.

    Article  Google Scholar 

  149. Starodubtseva, I.P., Kuznetsov, D.V., and Pavlenko, A.N., Experiments and Modeling on Cryogenic Quenching Enhancement by Structured Capillary-Porous Coating of Surface, Int. J. Heat Mass Transfer, 2021, vol. 176, p. 121388; doi.org/10.1016/j.ijheatmasstransfer.2021.121388.

    Article  Google Scholar 

  150. Grigoriev, V.A., Dudkevich, A.S., and Pavlov, Yu.M., Boiling of Cryogenic Liquids in a Thin Film, Voprosy Radioelektr. Ser. Tepl. Rezhimy, Termostat. Okhlazhd. Radioelektr. Apparat., 1970, no. 1, pp. 83–90.

  151. Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrumentat. Data Process., 2019, vol. 55, no. 6, pp. 554–563; doi.org/10.3103/ S8756699019060049.

    Article  ADS  Google Scholar 

  152. Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163, pp. 120488-1–120488-14; doi.org/10.1016/j.ijheatmasstransfer.2020.120488.

    Article  Google Scholar 

  153. Prenger, F.C., Stewart, W.F., and Runyan, J.E., Development of a Cryogenic Heat Pipe, Adv. Cryogenic Eng., 1994, vol. 39, pp. 1707–1714; doi.org/10.1007/978-1-4615-2522-6_209.

  154. Kwon, D.W., Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to Electromagnetic Formation Flight Satellites, PhD (Aeronautics and Astronautics) Thesis, Massachusetts Institute of Technology, 2009.

  155. Bodla, K.K., Murthy, J.Y., and Garimella, S.V., Evaporation Analysis in Sintered Wick Microstructures, Int. J. Heat Mass Transfer, 2013, vol. 61, pp. 107–121; doi.org/10.1016/j.ijheatmasstransfer.2013.02.038.

    Article  Google Scholar 

  156. Mehta, B., Soni, M., and Changela, K., Review of Parametric Investigation of Cryogenic Heat Pipe, Int. J. Recent Technol. Engin., 2014, vol. 3, no. 2, pp. 15–19; doi.org/10.35940/ijrte.2277-3878.

  157. Maydanik, Y.F., Chernysheva, M.A., and Pastukhov, V.G., Review: Loop Heat Pipes with Fat Evaporators, Appl. Therm. Engin., 2014, vol. 67, pp. 294–307; doi.org/10.1016/j.applthermaleng.2014.03.041.

    Article  Google Scholar 

  158. Wang, D.D., Liu, Z., He, S., Yang, J., and Liu, W., Operational Characteristics of a Loop Heat Pipe with a Flat Evaporator and Two Primary Biporous Wicks, Int. J. Heat Mass Transfer, 2015, vol. 89, pp. 33–41; doi.org/10.1016/j.ijheatmasstransfer.2015.05.042.

    Article  Google Scholar 

  159. Wong, S.C. and Liao, W.S., Visualization Experiments on Flat-Plate Heat Pipes with Composite Mesh-Groove Wick at Different Tilt Angles, Int. J. Heat Mass Transfer, 2018, vol. 123, pp. 839–847; doi.org/ 10.1016/j.ijheatmasstransfer.2018.03.031.

    Article  Google Scholar 

  160. Wang, D.D., Wang, J., Bao, X., Chen, G., and Chu, H., Evaporation Heat Transfer Characteristics of Composite Porous Wick with Spherical-Dendritic Powders, Appl. Therm. Engin., 2019, vol. 152, pp. 825–834; doi.org/10.1016/j.applthermaleng.2019.02.126.

    Article  Google Scholar 

  161. Li, J., Hong, F., Xie, R., and Cheng, P., Pore Scale Simulation of Evaporation in a Porous Wick of a Loop Heat Pipe Flat Evaporator Using Lattice Boltzmann Method, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 22–33; doi.org/10.1016/j.icheatmasstransfer.2019.01.008.

    Article  Google Scholar 

  162. Odagiri, K. and Nagano, H., Characteristics of Phase-Change Heat Transfer in a Capillary Evaporator Based on Microscale Infrared/Visible Observation, Int. J. Heat Mass Transfer, 2019, vol. 130, pp. 938–945; doi.org/10.1016/j.ijheatmasstransfer.2018.10.139.

    Article  Google Scholar 

  163. Odagiri, K. and Nagano, H., Investigation on Liquid-Vapor Interface Behavior in Capillary Evaporator for High Heat Flux Loop Heat Pipe, Int. J. Thermal Sci., 2019, vol. 140, pp. 530–538; doi.org/10.1016/ j.ijthermalsci.2019.03.008.

    Article  Google Scholar 

  164. Feng, C. and Chandra, S., Evaporation of Ethanol Films Wicking on Structured, Porous Coatings Deposited on Copper Plates, Int. J. Heat Mass Transfer, 2019, vol. 136, pp. 821–831; doi.org/10.1016/ j.ijheatmasstransfer.2019.03.045.

    Article  Google Scholar 

  165. Lutset, M.O. and Zhukov, V.Ye., Heat Transfer in a Rotating Cryostat at High Centrifugal Acceleration Fields, Cryogenics, 1989, vol. 29, pp. 37–41; doi.org/10.1007/978-94-010-0099-4_13.

  166. Klimenko, V.V., Processes of Two-Phase Heat Transfer with Liquid Cryogens (Forced Flow Boiling, Pool Film Boiling) and Development of Optimal Methods for Their Calculation, Abstract of Doct. Sci. (Engineering) Dissertation, Moscow: Moscow State University, Energy Institute, 1984, p. 40.

  167. Klimenko, V.V., Tyodorov, M.V., and Fomichyov, Yu.A., Channel Orientation and Geometry Influence on Heat Transfer with Two-Phase Forced Flow of Nitrogen, Cryogenics, 1989, vol. 29, pp. 31–36; doi.org/10.1016/0011-2275(89)90008-8.

    Article  ADS  Google Scholar 

  168. Klimenko, A.V., Sudarchikov, A.M., and Klimenko, V.V., Investigation of the Boiling Crisis of Forced Nitrogen Flow in a Channel at High Pressures, Vestnik MEI, 2005, no. 6, pp. 135–139.

  169. Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Cocurrent Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, J. Eng. Therm., 2002, vol. 11, no. 4, pp. 321–333.

    Google Scholar 

  170. Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, Actual Probl. Aviat. Aerospace Syst., 2004, vol. 9, no. 2(18), pp. 56–68.

  171. Zhukov, V.M., Anisimov, S.B., and Yarmak, I.L., Experimental Study of Heat Transfer of a Two-Phase Nitrogen Flow under Pulsed Heat Release in a Vertical Channel, in Int. Forum on Heat and Mass Transfer in Two-Phase Systems: Abstracts, Sect. 4, Minsk, 1988, pp. 78–80.

  172. Jackson, J., Liao, J., Klausner, J.F., and Mei, R., Transient Heat Transfer During Cryogenic Chilldown, in Procs. of HT2005 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, rep. HT2005-72145, 2005; doi.org/10.1115/HT2005-72145.

  173. Kuzma-Kichta, Yu., Suzuki, K., Lavrikov, A., Shustov, M., and Sholl, S., Heat Transfer Investigation in the Microchannel with Nanorelief, in Proc. of the 24th Int. Symp. on Transport Phenomena, Yamaguchi, Japan, 2013, p. 29.

  174. Shustov, M.V., Kuzma-Kichta, Y.A., and Lavrikov, A.V., Nanoparticle Coating of a Microchannel Surface is an Effective Method for Increasing the Critical Heat Flux, Therm. Eng., 2017, vol. 64, pp. 301–306; doi.org/10.1134/S0040601517040073.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.N., Kuznetsov, D.V. Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices. J. Engin. Thermophys. 30, 526–562 (2021). https://doi.org/10.1134/S1810232821040019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040019

Navigation