Skip to main content

Hydrodynamics of Instant Emptying of High-Pressure Liquid from Pipeline

Abstract

A hydrodynamical model of emptying of high-pressure liquid from a pipeline has been built. A comparative analysis of solutions found by an approximate method and more exact methods has been done. The solutions to the connected differential equations obtained are given. Numerical calculations have been performed for real-life values of the system parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. 1

    Zhukovskii, N.E., O gidravlicheskom udare v vodoprovodnykh trubakh (On hydraulic shock in water pipes), Moscow, Leningrad: Gos. izd. tekhniko-teoreticheskoi literatury, 1949.

  2. 2

    Yaskelyain, A.V., Investigation of Hydraulic Shock in Fluid during Pipeline Vibrations, Probl. Proch. Plastich., 2008, vol. 70, pp. 62–70.

    Google Scholar 

  3. 3

    Charnii, I.A., Neustanovivsheesya dvizhenie zhidkosti v trubakh (Unstable Motion of Fluid in Pipes), Moscow: Nedra, 1975.

    Google Scholar 

  4. 4

    Guseinzade, M.A., Druchina, L.I., Petrova, O.N., and Stepanova, M.F., Gidrodinamicheskie protsessy v slozhnykh truboprovodnykh systemakh (Hydrodynamic Processes in Complex Pipeline Systems), Moscow: Nedra, 1991.

    Google Scholar 

  5. 5

    Aronovich, G.V., Kartvelishvili, N.A., and Lyubimtsev, Ya.K., Gidravlicheskii udar i uravnitel’nye rezervuary (Hydraulic Shock and Intake Tanks), Moscow: Nauka, 1968.

    Google Scholar 

  6. 6

    Smirnov, D.N. and Zubov, L.B., Gidravlicheskii udar v napornykh vodovodakh (Hydraulic Shock in Pressure Water Conduits), Textbook, Moscow: Stroiizdat, 1975.

    Google Scholar 

  7. 7

    Abbasov, E.M., Kerimova, Sh.A., and Agaeva, N.A., Integral Modeling of the Pressure Build-Up Process, Inzh.-Fiz. Zh. (IFZh), 2019, vol. 92, no. 6, pp. 2475–2481.

    Google Scholar 

  8. 8

    Zhukov, V.I. and Pavlenko, A.N., Critical Phenomena at Evaporation in a Thin Liquid Layer at Reduced Pressure, J. Eng. Therm., 2013, vol. 22, no. 4, pp. 257–287.

    Article  Google Scholar 

  9. 9

    Watanabe, H., Matsuo, A., Chinnayya, A., and Matsuoka, K., Numerical Analysis of the Mean Structure of Gaseous Detonation with Dilute Water Spray, Cambridge University Press, 2020; https:// doi.org/10.1017/jfm.2019.1018.

  10. 10

    Lakshminarayana Reddy, M.H. and Meheboob Alam, Regularized Extended-Hydrodynamic Equations for a Rarefied Granular Gas and the Plane Shock Waves, Phys. Rev. Fluids, 2020, vol. 5; doi.org/10.1103/ PhysRevFluids.5.044302.

    Article  ADS  Google Scholar 

  11. 11

    Aramonovich, I.G., Lunts, G.L., and Elsgolts, E.E., Funktsii kompleksnogo peremennogo. Operatsionnoe ischislenie. Teoriya ustoychivosti (Complex Variable Functions. Operational Calculus. Stability Theory), Moscow: Nauka, 1968.

    Google Scholar 

  12. 12

    Dech, G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa (Guide to the Practical Application of the Laplace Transform), Moscow: Nauka, 1965.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to E. M. Abbasov or N. A. Agaeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasov, E.M., Agaeva, N.A. Hydrodynamics of Instant Emptying of High-Pressure Liquid from Pipeline. J. Engin. Thermophys. 30, 515–525 (2021). https://doi.org/10.1134/S1810232821030140

Download citation