Skip to main content
Log in

Investigation on Heat and Mass Transfer in Spray Drying Process

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Electrochemical properties of Lithium Ferrous Phosphate (LFP or LiFePO4) make it a promising cathode material for lithium-ion batteries in electric vehicle applications. Spray drying is often used for manufacture of LFP cathode powder as the method results in particles of uniform size and with favorable structure. Analyzing the heat and mass transfer characteristics during a spray drying process through experiments is expensive and involves tedious measurements and methods. This paper presents a computational fluid dynamics study of heat and mass transfer characteristics of spray drying process. The technique uses a 2D axisymmetric model that mimics a drying chamber of 0.25 m in diameter and 0.6 m in height to study the spray drying behavior. The working pressure and the flow rate required as input for the computational domain were obtained experimentally with the use of distilled water spray through a full cone nozzle. The computational model is validated with experimental data on water spray and extended for the LFP precursor. The variation of the mass fractions of the multi-component substance (LFP and water) and the influence of the pumping pressure and temperature of the carrier gas are discussed. Increased pumping pressure allows fine atomization and consequently reduces the drying time. The analysis enables better understanding of the spray drying mechanism and is helpful during spray dryer design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Jung, D.S., Hwang, T.H., Bin Park, S., and Choi, J.W., Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries, Nano Lett., 2013, vol. 13, no. 5, pp. 2092–2097; DOI: 10.1021/nl400437f.

    Article  ADS  Google Scholar 

  2. Gao, F., Tang, Z., and Xue, J., Preparation and Characterization of Nano-Particle LiFePO4 and LiFePO4/C by Spray-Drying and Post-Annealing Method, Electrochim. Acta, 2007, vol. 53, no. 4, pp. 1939–1944; DOI: 10.1016/j.electacta.2007.08.048.

    Article  Google Scholar 

  3. Vertruyen, B., Eshraghi, N., Piffet, C., Bodart, J., Mahmoud A., and Boschini, F., Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries, Materials (Basel)., 2018, vol. 11, no. 7; DOI: 10.3390/ma11071076.

    Article  ADS  Google Scholar 

  4. Freitas, C. and Müller, R. H., Spray-Drying of Solid Lipid Nanoparticles (SLN(TM)), Eur. J. Pharm. Biopharm., 1998, vol. 46, no. 2, pp. 145–151; DOI: 10.1016/S0939-6411(97)00172-0.

    Article  Google Scholar 

  5. Desobry, S.A., Netto, F.M., and Labuza, T.P., Comparison of Spray-Drying, Drum-Drying and Freeze-Drying for \(\beta\)-Carotene Encapsulation and Preservation, J. Food Sci., 1997, vol. 62, no. 6, pp. 1158–1162; DOI: 10.1111/j.1365-2621.1997.tb12235.x.

    Article  Google Scholar 

  6. Huang, L., Kumar, K., and Mujumdar, A.S., A Parametric Study of the Gas Flow Patterns and Drying Performance of Co-current Spray Dryer: Results of a Computational Fluid Dynamics Study, Dry. Technol., 2003, vol. 21, no. 6, pp. 957–978; DOI: 10.1081/DRT-120021850.

    Article  Google Scholar 

  7. Cotabarren, I.M., Bertı́n, D., Razuc, M., Ramı́rez-Rigo, M.V., and Piña, J., Modelling of the Spray Drying Process for Particle Design, Chem. Eng. Res. Des., 2018, vol. 132, pp. 1091–1104; DOI: 10.1016/ j.cherd.2018.01.012.

    Article  Google Scholar 

  8. Ducept, F., Sionneau, M., and Vasseur, J., Superheated Steam Dryer: Simulations and Experiments on Product Drying, Chem. Eng. J., 2002, vol. 86, nos. 1/2, pp. 75–83; DOI: 10.1016/S1385-8947(01)00275-3.

    Article  Google Scholar 

  9. Jüstel, M., Schwinger, A., Friedrich, B., and Binnewies, M., Synthesis of LiFePO4 by Ultrasonic and Nozzle Spray Pyrolysis, Zeitschrift fur Phys. Chemie, 2012, vol. 226, no. 2, pp. 177–183; DOI: 10.1524/ zpch.2012.0147.

    Article  Google Scholar 

  10. Langrish, T.A.G. and Kockel, T.K., The Assessment of a Characteristic Drying Curve for Milk Powder for Use in Computational Fluid Dynamics Modelling, Chem. Eng. J., 2001, vol. 84, no. 1, pp. 69–74; DOI: 10.1016/S1385-8947(00)00384-3.

    Article  Google Scholar 

  11. Phoungchandang, S. and Sertwasana, A., Spray-Drying of Ginger Juice and Physicochemical Properties of Ginger Powders, Science Asia, 2010, vol. 36, no. 1, pp. 40–45; DOI: 10.2306/scienceasial513-1874.2010.36.040.

    Article  Google Scholar 

  12. Fang, Z. and Bhandari, B., Effect of Spray Drying and Storage on the Stability of Bayberry Polyphenols, Food Chem., 2011, vol. 129, no. 3, pp. 1139–1147; DOI: 10.1016/j.foodchem.2011.05.093.

    Article  Google Scholar 

  13. Goula, A.M. and Adamopoulos, K.G., A New Technique for Spray Drying Orange Juice Concentrate, Innov. Food Sci. Emerg. Technol., 2010, vol. 11, no. 2, pp. 342–351; DOI: 10.1016/j.ifset.2009.12.001.

    Article  Google Scholar 

  14. Osorio, C., Forero, D.P., and Carriazo, J.G., Characterisation and Performance Assessment of Guava (Psidium Guajava L.) Microencapsulates Obtained by Spray-Drying, Food Res. Int., 2011, vol. 44, no. 5, pp. 1174–1181; DOI: 10.1016/j.foodres.2010.09.007.

    Article  Google Scholar 

  15. Schmitz-Schug, I., Foerst, P., and Kulozik, U., Impact of the Spray Drying Conditions and Residence Time Distribution on Lysine Loss in Spray Dried Infant Formula, Dairy Sci. Technol., 2013, vol. 93, nos. 4/5, pp. 443–462; DOI: 10.1007/s13594-013-0115-8.

    Article  Google Scholar 

  16. Wen, S., Li, G., Ren, R., and Li, C., Preparation of Spherical Li4Ti5O12 Anode Materials by Spray Drying, Mater. Lett., 2015, vol. 148, pp. 130–133; DOI: 10.1016/j.matlet.2015.02.061.

    Article  Google Scholar 

  17. Eftekhari, A., LiFePO4/C Nanocomposites for Lithium-Ion Batteries, J. Power Sources, 2017, vol. 343, pp. 395–411; DOI: 10.1016/j.jpowsour.2017.01.080.

    Article  ADS  Google Scholar 

  18. Bewlay, S.L., Konstantinov, K., Wang, G.X., Dou, S.X., and Liu, H.K., Conductivity Improvements to Spray-Produced LiFePO4by Addition of a Carbon Source, Mater. Lett., 2004, vol. 58, no. 11, pp. 1788–1791; DOI: 10.1016/j.matlet.2003.11.008.

    Article  Google Scholar 

  19. Versteeg, H.K. and Malalasekera, W., Introduction to Computational Fluid Dynamics, 1995, vol. 43, no. 8.

  20. Fletcher, C.A., Computational Techniques for Fluid Dynamics, 1992, vol. 70, no. 1.

  21. ANSYS Fluent Theory Guide, ANSYS Inc., USA, 2020, vol. 15317, pp. 724–746.

    Google Scholar 

  22. Ranz, W., Evaporation from Drops 1, Chem. Eng. Prog., 1952, vol. 48, no. 3. pp. 141–146.

    Google Scholar 

  23. Spalding, D.B., The Calculation of Mass Transfer Rates in Absorption, Vaporization, Condensation and Combustion Processes, Proc. Inst. Mech. Eng., 1954, vol. 168, no. 1, pp. 545–570; DOI: 10.1243 /pime_proc_1954_168_054_02.

    Article  Google Scholar 

  24. Maruyama, Y. and Hasegawa, K., Evaporation and Drying Kinetics of Water-NaCl Droplets via Acoustic Levitation, RSC Adv., 2020, vol. 10, no. 4, pp. 1870–1877; DOI: 10.1039/c9ra09395h.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekar, K., Raja, B. Investigation on Heat and Mass Transfer in Spray Drying Process. J. Engin. Thermophys. 30, 433–448 (2021). https://doi.org/10.1134/S1810232821030085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821030085

Navigation