Skip to main content

Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate

Abstract

Experimental studies on non-isothermal dissociation and combustion of double gas hydrate of methane-ethane the laminar air flow velocity \(V_{0}\) were carried out. A forced convective flow enhances both the heat transfer and dissociation rate. The curve of the rate of gas hydrate decay against \(V_{0}\) has a nonlinear character and demonstrates two regimes of dissociation. In the first regime, the decay rate increases with \(V_{0}\). After reaching the maximum value, the decay rate decreases slightly with \(V_{0}\) growth (the second regime of dissociation). The difference in the decay behavior in the two regimes is due to the different shapes of the flame. As the air velocity grows, the flame becomes inclined towards the wall, the temperature of which is much lower than the flame temperature (flame temperature is about 1500–1600 K, and the temperature of the powder layer surface is 0–20°C). Partial removal of water from the powder surface led a flame temperature rise of 70–100 K.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    Sum, A.K., Koh, C.A., and Sloan, E.D., Clathrate Hydrates: From Laboratory Science to Engineering Practice, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7457–7465.

    Article  Google Scholar 

  2. 2

    Istomin, V.A. and Yakushev, V.S., Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in Nature), Moscow: Nedra, 1992.

    Google Scholar 

  3. 3

    Takeya, S. et al., Anomalously Preserved Clathrate Hydrate of Natural Gas in Pellet Form at 253 K, J. Phys. Chem. C, 2012, vol. 116, pp. 13842–13848.

    Article  Google Scholar 

  4. 4

    Kuhs, W.F., Genov, G., Staykova, D.K., and Hansen, T., Ice Perfection and Onset of Anomalous Preservation of Gas Hydrates, Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 4917–4920.

    Article  Google Scholar 

  5. 5

    Zhang, G. and Rogers, R.E., Ultra-Stability of Gas Hydrates at 1 atm and 268.2 K, Chem. Eng. Sci., 2008, vol. 63, pp. 2066–2074.

    Article  Google Scholar 

  6. 6

    Takeya, S. and Ripmeester, J.A., Anomalous Preservation of CH4 Hydrate and Its Dependence on the Morphology of Ice, Chem. Phys. Chem., 2010, vol. 11, pp. 70–73.

    Article  Google Scholar 

  7. 7

    Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., and Narita, H., Texture Change of Ice on Anomalously Preserved Methane Clathrate Hydrate, J. Phys. Chem. B, 2005, vol. 109, pp. 5802–5807.

    Article  Google Scholar 

  8. 8

    Takeya, S., Yoneyama, A., Ueda, K., Hyodo, K., Takeda, T., Mimachi, H., Takahashi, M., Iwasaki, T., Sano, K., Yamawaki, H., and Gotoh, Y., Nondestructive Imaging of Anomalously Preserved Methane Clathrate Hydrate by Phase Contrast X-Ray Imaging, J. Phys. Chem., 2011, vol. 115, pp. 16193–16199.

    Article  Google Scholar 

  9. 9

    Stern, L.A., Circone, S., Kirby, S.H., and Durham, W.B., Anomalous Preservation of Pure Methane Hydrate at 1 atm., J. Phys. Chem. B, 2001, vol. 105, pp. 1756–1762.

    Article  Google Scholar 

  10. 10

    Stern, L.A., Circone, S., Kirby, S.H., and Durham, W.B., Temperature, Pressure and Compositional Effects on Anomalous or “Self” Preservation of Gas Hydrates, Can. J. Phys., 2003, vol. 81, pp. 271–283.

    ADS  Article  Google Scholar 

  11. 11

    Prasad, P.S.R. and Chari, V.D., Preservation of Methane Gas in the Form of Hydrates: Use of Mixed Hydrates, J. Natural Gas Sci. Eng., 2015, vol. 25, pp. 10–14.

    Article  Google Scholar 

  12. 12

    Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.

    Article  Google Scholar 

  13. 13

    Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.

    Article  Google Scholar 

  14. 14

    Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Gydrates, J. Eng. Therm., 2020, vol. 29, pp. 264–266.

    Article  Google Scholar 

  15. 15

    Misyura, S.Y. and Donskoy, I.G., Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures, J. CO2 Utilization, 2019, vol. 34, pp. 313–324.

    Article  Google Scholar 

  16. 16

    Misyura, S.Y. and Donskoy, I.G., Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition, Fuel, 2020, vol. 262, p. 116614.

    Article  Google Scholar 

  17. 17

    Singh, H. and Myong, R.S., Critical Review of Fluid Flow Physics at Micro- to Nano- Scale Porous Media Applications in the Energy Sector, Adv. Mat. Sci. Engin., 2018; https://doi.org/10.1155/2018/9565240.

    Article  Google Scholar 

  18. 18

    Cui, Y. et al., Review of Exploration and Production Technology of Natural Gas Hydrate, Adv. Geo-Energy Res., 2018, vol. 2, pp. 53–62.

    Article  Google Scholar 

  19. 19

    Wang, Y., Feng, J.C., Sen Li, X., Zhan, L., and Li, X.Y., Pilot-Scale Experimental Evaluation of Gas Recovery from Methane Hydrate Using Cycling-Depressurization Scheme, Energy, 2018, vol. 160, pp. 835–844.

    Article  Google Scholar 

  20. 20

    Li, B. et al., An Experimental Study on Gas Production from Fracture-Filled Hydrate by CO2 and CO2/N2 Replacement, Energy Convers. Manag., 2018, vol. 165, pp. 738–747.

    Article  Google Scholar 

  21. 21

    Tupsakhare, S.S. and Castaldi, M.J., Efficiency Enhancements in Methane Recovery from Natural Gas Hydrates Using Injection of CO2/N2 Gas Mixture Simulating In-Situ Combustion, Appl. Energy, 2019, vol. 236, pp. 825–836.

    Article  Google Scholar 

  22. 22

    Li, Bo, Liu, S.D., Liang, Y.P., and Liu, H., The Use of Electrical Heating for the Enhancement of Gas Recovery from Methane Hydrate in Porous Media, Appl. Energy, 2018, vol. 227, pp. 694–702.

    Article  Google Scholar 

  23. 23

    Rossi, F. et al., Experiments on Methane Hydrates Formation in Seabed Deposits and Gas Recovery Adopting Carbon Dioxide Replacement Strategies, Appl. Therm. Eng., 2019, vol. 148, pp. 371–381.

    Article  Google Scholar 

  24. 24

    Wang, Yi., Feng, J.C., Li, X.S., and Zhang, Yu., Influence of Well Pattern on Gas Recovery from Methane Hydrate Reservoir by Large Scale Experimental Investigation, Energy, 2018, vol. 152, pp. 34–45.

    Article  Google Scholar 

  25. 25

    Musakaev, N.G., Khasanov, M.K., and Borodin, S.L., The Mathematical Model of the Gas Hydrate Deposit Development in Permafrost, Int. J. Heat Mass Transfer, 2018, vol. 118, pp. 455–461.

    Article  Google Scholar 

  26. 26

    Shagapov, V.Sh., Yumagulova, Yu.A., and Musakaev, N.G., Theoretical Study of the Limiting Regimes of Hydrate Formation during Contact of Gas and Water, J. Appl. Mech. Tech. Phys., 2017, vol. 58, pp. 189–199.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. 27

    Khasanov, M.K., Stolpovsky, M.V., and Gimaltdinov, I.K., Mathematical Model for Carbon Dioxide Injection into Porous Medium Saturated with Methane and Gas Hydrate, Int. J. Heat Mass Transfer, 2018, vol. 127, pp. 21–28.

    Article  Google Scholar 

  28. 28

    Khasanov, M.K., Stolpovsky, M.V., and Gimaltdinov, I.K., Mathematical Model of Injection of Liquid Carbon Dioxide in a Reservoir Saturated with Methane and Its Hydrate, Int. J. Heat Mass Transfer, 2019, vol. 132, pp. 529–538.

    Article  Google Scholar 

  29. 29

    Okwananke, A., Hassanpouryouzband, A., Vasheghani Farahani, M., Yang, J., Tohidi, B., Chuvilin, E., Istomin, V., and Bukhanov, B., Methane Recovery from Gas Hydrate-Bearing Sediments: An Experimental Study on the Gas Permeation Characteristics under Varying Pressure, J. Petrol. Sci. Engin., 2019, vol. 180, pp. 435–444.

    Article  Google Scholar 

  30. 30

    Okwananke, A., Yang, J., Tohidi, B., Chuvilin, E., Istomin, V., Bukhanov, B., and Cheremisin, A., Enhanced Depressurisation for Methane Recovery from Gas Hydrate Reservoirs by Injection of Compressed Air and Nitrogen, J. Chem. Thermodyn., 2018, vol. 117, pp. 138–146.

    Article  Google Scholar 

  31. 31

    Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Coll. Surfaces A, 2018, vol. 559, pp. 275–283.

    Article  Google Scholar 

  32. 32

    Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.

    Article  Google Scholar 

  33. 33

    Misyura, S.Y., Egorov, R.I., Morozov, V.S., and Zaitsev, A.S., Self-Organization of Convective Flows and a Cluster of TiO2Particles in a Water Film under Local Heating: Interaction of Structures at Micro- and Macrolevels, J. Phys. Chem. C, 2020, vol. 124, no. 45, pp. 25054–25061.

    Article  Google Scholar 

  34. 34

    Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Scientific Rep., 2018, vol. 8, p. 11521.

    ADS  Article  Google Scholar 

  35. 35

    Chen, X.R., Li, X.S., Chen, Z.Y., Zhang, Yu, Yan, K.F., and Lv, Qiu-Nan, Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media, Energies, 2015, vol. 8, pp. 1242–1255.

    Article  Google Scholar 

  36. 36

    Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.

    Article  Google Scholar 

  37. 37

    Maruyama, Y., Yokomori, T., Ohmura, R., and Ueda, T., Flame Spreading over Combustible Hydrate in a Laminar Boundary Layer, Procs. of the 7th Int. Conf. on Gas Hydrate, Edinburgh, Scotland, United Kingdom, 2011.

  38. 38

    Maruyama, Y., Fuse, M.J., Yokomori, T., Ohmura, R., Watanabe, S., Iwasaki, T., Iwabuchi, W., and Ueda, T., Experimental Investigation of Flame Spreading over Pure Methane Hydrate in a Laminar Boundary Layer, Proc. Combust. Inst., 2013, vol. 34, pp. 2131–2138.

    Article  Google Scholar 

  39. 39

    Nakamura, Y., Katsuki, R., Yokomori, T., Ohmura, R., Takahashi, M., Iwasaki, T., Uchida, K., and Ueda, T., Combustion Characteristics of Methane Hydrate in a Laminar Boundary Layer, Energy Fuels, 2009, vol. 23, pp. 1445–1449.

    Article  Google Scholar 

  40. 40

    Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids Surfaces A, 2019, vol. 572, pp. 37–46.

    Article  Google Scholar 

  41. 41

    Misyura, S.Y., The Influence of Convection on Heat Transfer in a Water Layer on a Heated Structured Wall, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 14–21.

    Article  Google Scholar 

  42. 42

    Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.

    Article  Google Scholar 

  43. 43

    Misyura, S.Y., Kuznetsov, G.V., Feoktistov, D.V., Volkov, R.S., Morozov, V.S., and Orlova, E.G., The Influence of the Surface Microtexture on Wettability Properties and Drop Evaporation, Surface Coatings Technol., 2019, vol. 375, pp. 458–467.

    Article  Google Scholar 

  44. 44

    Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., and Chao, Y.C., Thermal Structure of Methane Hydrate Fueled Flames, Proc. Combust. Inst., 2017, vol. 36, pp. 4391–4398.

    Article  Google Scholar 

  45. 45

    Chien, Y.-C. and Dunn,-Rankin D., Combustion Characteristics of Methane Hydrate Flames, Energies, 2019, vol. 12, no. 10, p. 1939.

    Article  Google Scholar 

  46. 46

    Gaydukova, O.S., Misyura, S.Y., and Strizhak, P.A., Investigating Regularities of Gas Hydrate Ignition on a Heated Surface: Experiments and Modeling, Combust. Flame, 2021, vol. 228, pp. 78–88.

    Article  Google Scholar 

  47. 47

    Yoshioka, T., Yamamoto, Y., Yokomori, T., Ohmura, R., and Ueda, T., Experimental Study on Combustion of Methane Hydrate Sphere, Exp. Fluids, 2015, vol. 56, p. 192.

    ADS  Article  Google Scholar 

  48. 48

    Bar-Kohany, T. and Sirignano, W.A., Transient Combustion of Methane-Hydrate Sphere, Combust. Flame, 2016, vol. 163, pp. 284–30.

    Article  Google Scholar 

  49. 49

    Dagan, Y. and Bar-Kohany, T., Flame Propagation through Three-Phase Methane-Hydrate Particles, Combust. Flame, 2018, vol. 193, pp. 25–35.

    Article  Google Scholar 

  50. 50

    Misyura, S.Y., Efficiency of Methane Hydrate Combustion for Different Types of Oxidizer Flow, Energy, 2016, vol. 103, pp. 430–439.

    Article  Google Scholar 

  51. 51

    Misyura, S.Y., Developing the Environmentally Friendly Technologies of Combustion of Gas Hydrates. Reducing Harmful Emissions during Combustion, Environ. Pollut., 2020, vol. 265.

    Article  Google Scholar 

  52. 52

    Cui, G., Dong, Z., Wang, S., Xing, X., Shan, T., and Li, Z., Effect of the Water on the Flame Characteristics of Methane Hydrate Combustion, Appl. Energy, 2020, vol. 259, p. 114205.

    Article  Google Scholar 

  53. 53

    Kuznetsov, D.V., Pavlenko, A.N., and Volodin, O.A., Effect of Structuring by Deformational Cutting on Heat Transfer and Dynamics of Transient Cooling Processes with Liquid Film Flowing onto a Copper Plate, J. Eng. Therm., 2020, vol. 29, pp. 531–541.

    Article  Google Scholar 

  54. 54

    Gogonin, I.I. and Misyura, S.Y., Film Heat Exchangers: Hydrodynamics and Heat Transfer, J. Eng. Therm., 2020, vol. 29, pp. 686–710.

    Article  Google Scholar 

  55. 55

    Voytkov, I.S., Shlegel, N.E., and Vysokomornaya, O.V., Duration of Periods of Temperature Decreasing in the Wake of a Time-Discrete Flow of Water Droplets Moving through High-Temperature Gases, J. Eng. Therm., 2020, vol. 29, pp. 267–278.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. Y. Misyura or V. S. Morozov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Morozov, V.S. Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate. J. Engin. Thermophys. 30, 374–382 (2021). https://doi.org/10.1134/S1810232821030048

Download citation