Skip to main content

Thermophysical Properties of Liquid K–Pb Alloys

Abstract

The thermal conductivity and the enthalpy increment of K–Pb alloys with a Pb content of 50.00 and 66.67 at. % have been measured by the laser flash method and drop calorimetry in the temperature range from the liquidus line to 1073...1273 K. Based on the measurement results, the specific heat capacity and the thermal diffusivity of the melts have been calculated. Approximation equations for the temperature dependences of the studied properties have been obtained, and tables of reference data have been developed. The concentration dependences of the transport and caloric properties of the K–Pb system demonstrate significant deviations from calculations according to the additivity rule and the presence of extrema in the region of the equiatomic composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    Meijer, J.A., Geertsma, W., and van der Lugt, W., Electrical Resistivities of Liquid Alkali-Lead and Alkali-Indium Alloys, J. Phys. F: Metal Phys., 1985, vol. 15, no. 4, pp. 899–910; https://doi.org/10.1088/0305-4608/15/4/014.

    ADS  Article  Google Scholar 

  2. 2

    Morachevskii, A.G., Physicochemical, Structural, and Technological Investigation of Liquid Potassium-Lead Alloys, J. Appl. Chem. USSR, 1992, vol. 65, no. 6, pp. 993–1007.

    Google Scholar 

  3. 3

    Gantmakher, V.F., Chemical Localization, Physics-Uspekhi, 2002, vol. 45, no. 11, pp. 1165–1174; https:// doi.org/10.1070/PU2002v045n11ABEH001246.

    ADS  Article  Google Scholar 

  4. 4

    van der Lugt, W., Polyanions in Liquid Ionic Alloys: A Decade of Research, J. Phys.: Cond. Matter, 1996, vol. 8, no. 34, pp. 6115–6138. https://doi.org/10.1088/0953-8984/8/34/003.

    ADS  Article  Google Scholar 

  5. 5

    Saboungi, M., Geertsma, W., and Price, D.L., Ordering in Liquid Alloys, Ann. Rev. Phys. Chem., 1990, vol. 41, no. 1, pp. 207–244; https://doi.org/10.1146/annurev.pc.41.100190.001231.

    ADS  Article  Google Scholar 

  6. 6

    Price, D.L. and Saboungi, M.L., Melting in Alkali-Metal–Lead Alloys: KPb and CsPb, Phys. Rev. B, 1991, vol. 44, no. 14, pp. 7289–7296; https://doi.org/10.1103/PhysRevB.44.7289.

    ADS  Article  Google Scholar 

  7. 7

    Khairulin, R.A., Stankus, S.V., and Abdullaev, R.N., Volumetric Properties of Liquid K–Pb Alloys, Thermophys. Aeromech., 2015, vol. 22, no. 3, pp. 345–350; https://doi.org/10.1134/S0869864315030099.

    ADS  Article  Google Scholar 

  8. 8

    Abdullaev, R.N., Khairulin, R.A., and Stankus, S.V., Interdiffusion in Potassium-Lead Melts in a Wide Range of Concentrations, Thermophys. Aeromech., 2014, vol. 21, no. 3, pp. 347–353; https://doi.org/ 10.1134/S0869864314030081.

    ADS  Article  Google Scholar 

  9. 9

    Saboungi, M., Leonard, S.R., and Ellefson, J., Anomalous Behavior of Liquid K–Pb Alloys: Excess Stability, Entropy, and Heat Capacity, J. Chem. Phys., 1986, vol. 85, no. 10, pp. 6072–6081; https://doi.org/ 10.1063/1.451524.

    ADS  Article  Google Scholar 

  10. 10

    Saar, J. and Ruppersberg, H., Specific Heat of Liquid K/Pb Alloys Calculated from (\(\partial \)p/\(\partial \)T)s and \(\varrho \)(T) Data, Zeitschrift für Physikalische Chemie, 1988, vol. 156, no. 2, pp. 587–591; https://doi.org/10.1524/ zpch.1988.156.Part_2.587.

    Article  Google Scholar 

  11. 11

    Johnson, G.K. and Saboungi, M., Heat Capacity of Liquid Equiatomic Potassium–Lead Alloy: Anomalous Temperature Dependence, J. Chem. Phys., 1987, vol. 86, no. 11, pp. 6376–6380; https://doi.org/ 10.1063/1.452425.

    ADS  Article  Google Scholar 

  12. 12

    Agazhanov, A.Sh., Khairulin, A.R., Abdullaev, R.N., and Stankus, S.V., Thermophysical Properties of the Liquid Eutectic K–Pb Alloy, Thermophys. Aeromech., 2020, vol. 27, no. 4, pp. 623–626; https:// doi.org/10.1134/S0869864320040150.

    ADS  Article  Google Scholar 

  13. 13

    Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity and Thermal Diffusivity of Li-Pb Eutectic in the Temperature Range of 293–1273 K, Fusion Engin. Design, 2020, vol. 152, no. 111456, pp. 1–5; https://doi.org/10.1016/j.fusengdes.2020.111456.

    Article  Google Scholar 

  14. 14

    Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., A High-Temperature Drop Calorimeter for Studying Substances and Materials in the Solid and Liquid States, Instrum. Exp. Techn., 2017, vol. 60, no. 4, pp. 608–613; https://doi.org/10.1134/S0020441217030265.

    Article  Google Scholar 

  15. 15

    Savchenko, I.V., Stankus, S.V., and Agazhanov, A.S., Measurement of the Thermal Conductivity and Diffusivity of Molten Lead in the Interval 601–1000 K, Atomic Energy, 2013, vol. 115, no. 2, pp. 83–87; https://doi.org/10.1007/s10512-013-9753-4.

    Article  Google Scholar 

  16. 16

    Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Lithium, Sodium and Potassium in the Liquid State, Phys. Chem. Liquids, 2020, vol. 58, no. 6, pp. 760–768, https://doi.org/10.1080/00319104.2019.1636377.

    Article  Google Scholar 

  17. 17

    Subbotin, V.I., Arnol’dov, M.N., Kozlov, F.A., and Shimkevich, A.L., Liquid-Metal Coolants for Nuclear Power, Atomic Energy, 2002, vol. 92, no. 1, pp. 29–40; https://doi.org/10.1023/A:1015050512710.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Sh. Agazhanov, A. R. Khairulin, R. N. Abdullaev or S. V. Stankus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agazhanov, A.S., Khairulin, A.R., Abdullaev, R.N. et al. Thermophysical Properties of Liquid K–Pb Alloys. J. Engin. Thermophys. 30, 365–373 (2021). https://doi.org/10.1134/S1810232821030036

Download citation