Skip to main content
Log in

Numerical Modeling of Flow Pattern and Heat Transfer at Injection of Counter-Flowing Wall Jet

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Characteristic features of mixing of and heat transfer between a 2D counter-flowing wall jet and a main-stream flow were studied numerically. In the initial section of the flow above the working wall, an extended zone of recirculation flow appears after the reversal of the jet. A local increase in the velocity is observed between the upper wall of the channel and the separation zone. The size of the separation region and the flow intensity in it are defined by the value of the injection parameter. It is shown that there is an extended region of higher turbulence level above the working wall of the channel. This is due to the presence of a large recirculating vortex at mixing of the counter-flowing wall jet with the main-stream flow. The length of the flow recirculation zone increases with the injection parameter. Injection of counter-flowing wall jet into the main-stream flow causes significant enhancement of the heat transfer (the maximum increase in the heat transfer is as high as 6 times) in comparison with the flow in the channel under other identical conditions. With higher injection parameter, significant reduction in the heat transfer rate is observed (almost twofold).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Elperin, I.T., Meltser, V.L., Pavlovskii, L.L., and Enyakin, Yu.A., Protsessy perenosa vo vstrechnykh struyakh. (Gazovzves’) (Transport Processes in Counter-Flowing Jets (Particle-Laden Flow)), Minsk: Nauka i tekhnika, 1972.

  2. Abramovich, G.N., Girshovich, T.A., Krasheninnikov, S.Yu., Sekundov, A.N., and Smirnova, I.P., Teoriya turbulentnykh strui (Theory of Turbulent Jets), Moscow: Nauka, 1984.

  3. Pakhomov, M.A. and Terekhov, V.I., Droplet-Laden Mist Film Cooling Effectiveness of Cylindrical Holes Embedded in a Transverse Trench, J. Eng. Therm., 2018, vol. 27, pp. 387–398.

    Article  Google Scholar 

  4. Nazarov, A.D., Miskiv, N.B., Surtaev, A.S., and Serdyukov V.S., Characterization of Multi-Jet Cooling Using High-Speed Visualization and IR Thermography, J. Eng. Therm., 2019, vol. 29, pp. 489–498.

    Article  Google Scholar 

  5. Volchkov, E.P., Pristennye gazovye zavesy (Wall Curtains of Gas), Novosibirsk: Nauka, 1983.

  6. Goldstein, R.J., Film Cooling, Adv. Heat Transfer, 1971, vol. 7, pp. 321–378.

    Article  Google Scholar 

  7. Volchkov, E.P., Lebedev, V.P., and Terekhov, V.I., Heat Transfer in Turbulent Near-Wall Jets Streams, Thermophys. Aeromech., 1997, vol. 4, pp. 163–177.

    Google Scholar 

  8. Launder, B.E. and Rodi, W., The Turbulent Wall Jet-Measurement and Modeling, Annual Rev. Fluid Mech., 1983, vol. 15, pp. 429–459.

    Article  ADS  Google Scholar 

  9. Sharma, S., Jesudhas, V., Balachandar, R., and Barron, R., Turbulence Structure of a Counter-Flowing Wall Jet, Phys. Fluids, 2019, vol. 31, p. 025110.

    Article  ADS  Google Scholar 

  10. Lebedev, V.P. and Nizovtsev, M.I., Thermal Characteristics of a Counter-Current Wall Jet, J. Appl. Mech. Techn. Phys., 1989, vol. 30, pp. 776–779.

    Article  ADS  Google Scholar 

  11. Volchkov, E.P., Lebedev, V.P., Nizovtsev, M.I., and Terekhov, V.I., Heat Transfer in Channel Behind Injection Section of Counter-Current Wall Jet, Izv. SO AN SSSR. Ser. Tekh. Nauk, 1990, no. 3, pp. 21–25.

    Google Scholar 

  12. Volchkov, E.P., Lebedev, V.P., Nizovtsev, M.I., and Terekhov, V.I., Aerodynamics and Heat Transfer behind the Injection Section of the Counter-Current Wall Jet, Vysokotemperaturnye techeniya i teploobmen (High Temperature Flows and Heat Transfer), Novosibirsk: Institute of Thermophysics SB RAS, 1990, pp. 76–93.

  13. Volchkov, E.P., Lebedev, V.P., Nizovtsev, M.I., and Terekhov, V.I., Heat Transfer in a Channel with a Counter-Current Wall Jet Injection, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2677–2687.

    Article  Google Scholar 

  14. Lebedev, V.P., Nizovtsev, M.I., and Terekhov, V.I., Spreading of a Boundary Jet in a Counter Flow, J. Appl. Mech. Techn. Phys., 1991, vol. 32, pp. 231–235.

    Article  ADS  Google Scholar 

  15. Balachandar, R., Robillard, L., and Ramamurthy, A.S., Some Characteristics of Counter-Flowing Wall Jets, ASME J. Fluids Eng., 1992, vol. 114, pp. 554–558.

    Article  Google Scholar 

  16. Tanaka, E., Inoue, Y., and Yamashita, S., An Experimental Study on the Two-Dimensional Opposed Wall Jet in a Turbulent Boundary Layer: Change in the Flow Pattern with Velocity Ratio, Exp. Fluids, 1994, vol. 17, pp. 238–245.

    Article  ADS  Google Scholar 

  17. https://www.openfoam.com.

  18. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., 1994, vol. 32, pp. 1598–1605.

    Article  ADS  Google Scholar 

  19. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1979.

  20. Kutateladze, S.S. and Leont’ev, A.I., Heat and Mass Transfer in Turbulent Boundary Layer, New York: Hemisphere, 1989.

  21. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Heat Transfer Fundamentals), Moscow: Energiya, 1977.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Ocheredko, M. A. Pakhomov, V. V. Terekhov or V. I. Terekhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocheredko, A.I., Pakhomov, M.A., Terekhov, V.V. et al. Numerical Modeling of Flow Pattern and Heat Transfer at Injection of Counter-Flowing Wall Jet. J. Engin. Thermophys. 30, 225–234 (2021). https://doi.org/10.1134/S1810232821020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821020065

Navigation