Skip to main content

CFD-based Parametric Study of Swirl Effects on Combustion in Industrial Natural Gas Combustor


Accurate prediction of the temperature and various species concentrations at combustor exhaust is very important. This work presents numerical investigations of a can-type combustor used in industrial gas turbines for power generation. The methane-air combustion process is investigated using models based on Reynolds-averaged Navier–Stokes (RANS) equations. Enhancement of the mixing of air and fuel streams, which results in better combustion, is numerically investigated using different swirl rates. The investigation explores different combinations of turbulence, combustion, and radiation models to find the best possible combination that could accurately predict the combustion process. The numerical results are validated with the extensive experimental database available in the open literature. A structured grid is used to investigate the effect of different modelling parameters as it turned out to reduce the computational power and simulation time. It is found that a swirl improves the combustion process by forming recirculation zones of different lengths and time scales. The combustion lengths are reduced by the entrainment and rapid mixing of the reactants in the recirculation zones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1

    Garreton, D., and Simonin, O., Aerodynamics of Steady State Combustion Chambers and Furnaces, ASCF Ercoftac CFD Workshop, Chatou, France, 1994.

  2. 2

    da Silva, C.V., Franca, F.H.R., and Vielmo, H.A., Analysis of the Turbulent, Non-premixed Combustion of Natural Gas in a Cylindrical Chamber with and without Thermal Radiations, Combust. Sci. Technol., 2007, vol. 179, no. 8, pp. 1605–1630.

  3. 3

    Centeno, F.R., Cassol, F., Vielmo, H.A., França, F.H.R., and da Silva, C.V., Comparison of Different WSGG Correlations in the Computation of Thermal Radiation in a 2D Axisymmetric Turbulent Non-Premixed Methane–Air Flame, J. Braz. Soc. Mech. Sci., 2013, vol. 35, no. 4, pp. 419–430.

  4. 4

    Ronchetti, B., da Silva, C.V., and Vielmo, H.A., Simulation of Combustion in Cylindrical Chamber, Proc. 18th Int. Congr. Mech. Eng., Ouro Preto, Brazil, 2005.

  5. 5

    Pang, Y.S., Law, W.P., Pung, K.Q., and Gimbun, J., A Computational Fluid Dynamics Study of Turbulence, Radiation and Combustion Models for Natural Gas Combustion Burner, Bull. Chem. React. Eng. Catal., 2018, vol. 13, pp. 155–169.

  6. 6

    Da Silva, C.V., Segatto, C.A., Paula, A.V.D., and Centeno, F.R., 3D Analysis of Turbulent Non-Premixed Combustion of Natural Gas in a Horizontal Cylindrical Chamber, Proc. 22 nd Braz. Cong. Mech. Eng., Ribeirão Preto, SP, Brazil, 2013.

  7. 7

    Parente, A., Galletti, C., and Tognotti, L., Effect of the Combustion Model and Kinetic Mechanism on the MILD Combustion in an Industrial Burner Fed with Hydrogen Enriched Fuels, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7553–7564.

  8. 8

    Magel, H.C., Schnell, U., and Hein, K.R.G., Simulation of Detailed Chemistry in a Turbulent Combustor Flow, Symp. (Int.) Combust., 1996, vol. 26, pp. 67–74.

  9. 9

    Derudi, M., Villani, A., and Rota, R., Mild Combustion of Industrial Hydrogen-Containing Byproducts, Ind. Eng. Chem. Res., 2007, vol. 46, no. 21, pp. 6806–6811.

  10. 10

    Miroslav, S., Stevanovic, Z., and Belosevic, S., Modeling of Non-Confined Turbulent Flow of Two Coaxial Streams Under Combustion Conditions, Facta Universitatis, Ser. Mech. Engin., 2001, vol. 1, no. 8, pp. 981–988.

  11. 11

    Cavaliere, A. and Joannon, M.D., Mild Combustion, Prog. Energy Combust. Sci., 2004, vol. 30, no. 4, pp. 329–366.

  12. 12

    Magel, H.C., Schnell, U., and Hein, K.R.G., Modeling of Hydrocarbon and Nitrogen Chemistry in Turbulent Combustor Flows using Detailed Reactions Mechanisms, 3rd Workshop on Modeling of Chemical Reaction Systems, Heidelberg, 1996, pp. 1–10.

  13. 13

    Salvador, S., Commandre, J.M., and Kara, Y., Thermal Recuperative Incineration of VOCs: CFD Modeling and Experimental Validation,Appl. Therm. Eng., 2006, vol. 26, pp. 2355–2366.

  14. 14

    Beér, J.M., and Chigier, N.A., Combustion Aerodynamics, London: Applied Science Publishers (Elsevier), 1972.

  15. 15

    Fluent 6.3 User’s Guide, New Hampshire: Fluent, 2006.

  16. 16

    Magnussen, B.F., and Hjertager, B.H., On Mathematical Modeling of Turbulent Combustion with Species Emphasis on Soot Formation and Combustion, Proc. 16th Symp. (Int.) Combust., 1977, vol. 16, pp. 719–729.

  17. 17

    Howell, J.R., Mengüç, M.P., and Siegel, R., Thermal Radiation Heat Transfer, CRC Press, 2011.

  18. 18

    Gosman, A.D. and Lockwood, F.C., Incorporation of a Flux Model for Radiation into a Finite Difference Procedure for Furnace Calculations,Proc. 14th Symp. (Int.) Combust., 1973, vol. 14, pp. 661–671.

  19. 19

    Roache, P.J., Quantification of Uncertainty in Computational Fluid Dynamics, Ann. Rev. Fluid. Mech., 1997, vol. 29, pp. 123–60.

Download references

Author information



Corresponding author

Correspondence to U. Allauddin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allauddin, U., Uddin, N., Ansari, H.R. et al. CFD-based Parametric Study of Swirl Effects on Combustion in Industrial Natural Gas Combustor. J. Engin. Thermophys. 30, 75–102 (2021).

Download citation