Skip to main content

Spontaneous Boiling-Up Onset: Activation Effect of Laser Pulses


Miniature fiber optic sensors were used for detection of initial boiling-up of uniformly superheated liquid in the capillary of a bubble chamber. The possibility of local boiling-up activation by a laser pulse at a single-mode fiber end with a diameter of 9 \(\mu\)m was shown. The object of the study was \(n\)-pentane superheated at 82 K with respect to the liquid-vapor equilibrium temperature at atmospheric pressure. The control sensor recorded a signal similar to that of spontaneous macroscopic boiling-up. The activation threshold value for the radiation intensity at the end of the fiber was found. This value varies for different fibers. The minimum pulse energy required for activation was 6 nJ, which was insufficient for triggering of the thermal activation mechanism. An assumption is made about the mechanical effect of laser pulse on the fiber-liquid interface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1

    Skripov, V.P., Metastable States, J. Non-Equilb. Thermodyn., 1992, vol. 17, pp. 193–236.

  2. 2

    Skripov, V.P., Sinitsyn, E.N., Pavlov, P.A., Ermakov, G.V., Muratov, G.N., Bulanov, N.V., and Baidakov, V.G.,Thermophysical Properties of Liquids in the Metastable (Superheated) State, London: Gordon and Breach Sci. Publ., 1988.

  3. 3

    Nikitin, E.D. and Pavlov, P.A., Density of Boiling Centers on the Surface of a Platinum Heater Submerged in Water, High Temp., 1980, vol. 18, no. 6, pp. 924–927.

  4. 4

    Okonishnikov, G.B. and Pavlov, P.A., Limiting Superheating of Electrically Conducting Liquids: Homogeneous Aqueous Solutions,High Temp., 1996, vol. 34, no. 2, pp. 249–254.

  5. 5

    Avedisian, C.T., Cavicchi, R.E., and Tarlov, M.J., New Technique for Visualizing Microboiling Phenomena and Its Application to Water Pulse Heated by a Thin Metal Film, Rev. Sci. Instrum., 2006, vol. 77, p. 063706.

  6. 6

    Serdyukov, V.S., Surtaev, A.S., Pavlenko, A.N., and Chernyavskiy, A.N., Study on Local Heat Transfer in the Vicinity of the Contact Line under Vapor Bubbles at Pool Boiling, High Temp., 2018, vol. 56, no. 4, pp. 546–552.

  7. 7

    Zhukov, V.I. and Pavlenko, A.N., Crisis of Nucleate Boiling in a Finite-Height Horizontal Layer of Liquid, J. Eng. Therm., 2020, vol. 29, no. 1, pp. 1–13.

  8. 8

    Kuznetsov, V.V. and Kozulin, I.A., Explosive Vaporization of a Water Layer on a Flat Microheater, J. Eng. Therm., 2010, vol. 19, no. 2, pp. 102–109.

  9. 9

    Kozulin, I.A. and Kuznetsov, V.V., The Dynamics of Explosive Vaporization of a Two-Component Liquid Mixture, J. Phys.: Conf. Ser., 2019, vol. 1359, p. 012052.

  10. 10

    Ermakov, G.V., Gurashkin, A.L., Lipnyagov, E.V., and Perminov, S.A., Video Monitoring of the Superheated Liquid Boiling-Up at the Attainable Superheat Boundary, Tech. Phys. Lett., 2009, vol. 35, no. 12, pp. 1104–1107.

  11. 11

    Ermakov, G.V., Lipnyagov, E.V., Perminov, S.A., and Gurashkin, A.L., Heterogeneous Boiling-Up of Superheated Liquid at Achievable Superheat Threshold, J. Chem. Phys., 2009, vol. 131, no. 3, p. 031102.

  12. 12

    Gurashkin, A.L., Starostin, A.A., and Skripov, P.V., Pulse Activation of Superheated Liquid Boiling-Up by Laser Radiation,Tech. Phys. Lett., 2020, vol. 46, no. 6, pp. 617–620.

  13. 13

    Gurashkin, A.L., Starostin, A.A., Ermakov, G.V., and Skripov, P.V., Communication: High-Speed Optical Investigations of a Character of Boiling-Up Onset, J. Chem. Phys., 2012, vol. 136, p. 021102.

  14. 14

    Arvengas, A., Herbert, E., Cersoy, S., Davitt, K., and Caupin, F., Cavitation in Heavy Water and Other Liquids, J. Phys. Chem. B, 2011, vol. 115, p. 14240.

  15. 15

    Arvengas, A., Davitt, K., and Caupin, F., Fiber Optic Probe Hydrophone for the Study of Acoustic Cavitation in Water, Rev. Sci. Instrum., 2011, vol. 82, p. 034904.

  16. 16

    Gurashkin, A.L., Starostin, A.A., Uimin, A.A., Yampol’skiy, A.D., Ermakov, G.V., and Skripov, P.V., Experimental Determination of Superheated Liquid Density by the Optical Fiber Method, J. Eng. Therm., 2013, vol. 22, no. 3, pp. 194–202.

  17. 17

    Gurashkin, A.L., Yampol’skii, A.D., Starostin, A.A., and Skripov, P.V., Optical Studies of the Initial Stage of Spontaneous Boiling-Up,Tech. Phys. Lett., 2013, vol. 39, no. 8, pp. 751–754.

  18. 18

    Lipnyagov, E.V., Gurashkin, A.L., Starostin, A.A., and Skripov, P.V., Going to Spontaneous Boiling-Up Onset, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 307–318.

  19. 19

    Beaton, C.F. and Hewitt, G.F., Physical Property Data for the Design Engineer, New York: Hemisphere, 1989.

  20. 20

    Ashkin, A. and Dziedzic, J.M., Radiation Pressure on a Free Liquid Surface, Phys. Rev. Lett., 1973, vol. 30, pp. 139–142.

  21. 21

    Zhang, L., She, W., Peng, N., and Leonhardt, U., Experimental Evidence for Abraham Pressure of Light, New J. Phys., 2015, vol. 17. p. 053035.

Download references

Author information



Corresponding author

Correspondence to P. V. Skripov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurashkin, A.L., Starostin, A.A. & Skripov, P.V. Spontaneous Boiling-Up Onset: Activation Effect of Laser Pulses. J. Engin. Thermophys. 30, 51–57 (2021).

Download citation