Skip to main content

Adhesion of Ethylene-Vinyl Acetate Copolymer Filled with Tarkosil Silica Nanoparticles


This article is devoted to adhesion forces of polymers modified with silica nanoparticles, as well as studying changes in the surface relief of polymers modified with nanopowders of silicon dioxide, using the atomic force microscope. Enhancement of adhesion forces of nanocomposite samples of polymers containing 1 and 3% of silica nanoparticles was observed despite the non-modified nature of the samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1

    Functional Fillers for Plastics, Xanthos, M., Ed., Wiley-VCH Verlag, 2005.

  2. 2

    Fu, S., Sun, Z., Huang, P., Li, Y., and Hu, N., Some Basic Aspects of Polymer Nanocomposites: A Critical Review, Nano Mat. Sci., 2019, vol. 1, pp. 12–30.

  3. 3

    Joa, H.S. and Leea, G.W., Investigation of Mechanical and Thermal Properties of Silica-Reinforced Epoxy Composites by Using Experiment and Empirical Model, Materials Today: Proceedings, 2017, vol. 4, pp. 6178–6187.

  4. 4

    Tarhini, A.A. and Tehrani-Bagha, A.R., Graphene-Based Polymer Composite Films with Enhanced Mechanical Properties and Ultra-High In-Plane Thermal Conductivity, Compos. Sci. Technol., 2019, vol. 184, article 107797.

  5. 5

    Pukanszky, B. and Voros, G., Mechanism of Interfacial Interactions in Particulate Filled Composites, Compos. Interfac., 2015, vol. 1, pp. 411–427.

  6. 6

    Ou, Y., Yang, F., and Yu, Z., A New Conception on the Toughness of Nylon 6/Silica Nanocomposite Prepared via In Situ Polymerization,J. Polym. Sci., Part B: Polym. Phys., 2015, vol. 36, pp. 789–795.

  7. 7

    Ma, R., Li, W., Huang, M., Feng, M., and Liu, X., The Reinforcing Effects of Dendritic Short Carbon Fibers for Rigid Polyurethane Composites, Compos. Sci. Technol., 2019, vol. 170, pp. 128–134.

  8. 8

    Nuruddin, Md., Mendis, G.P., Ra, K., Sendesi, S.M.T., Futch, T., Goodsell, J., Whelton, A.J., Youngblood, J.P., and Howarter, J.A., Evaluation of the Physical, Chemical, Mechanical, and Thermal Properties of Steam-Cured PET/Polyester Cured-In-Place Pipe,J. Compos. Mater., 2019, vol. 53, pp. 2687–2699.

  9. 9

    Sviridenok, A.I., Zharin, A.L., Krautsevich, A.U., and Tyavlovsky, A.K., Influence of the High Dispersion Filler on the Adhesion and Friction Properties of Ethylene with Vinyl Acetate, J. Frict. Wear, 2014, vol. 35, no. 4, pp. 401–411.

  10. 10

    Halpin, J.C., Stiffness and Expansion Estimates for Oriented Short Fiber Composites, J. Compos. Mater., 1969, vol. 3, pp. 732–734.

  11. 11

    Odegard, G.M., Clancy, T.C., and Gates, T.S., Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites,Polymer, 2005, vol. 46, pp. 553–562.

  12. 12

    Sideridis, E., Kytopoulos, V.N., Kyriazi, E., and Bourkas, G., Determination of Thermal Expansion Coefficient of Particulate Composites by the Use of a Triphase Model, Compos. Sci. Technol., 2005, vol. 65, pp. 909–919.

  13. 13

    Nielsen, L.E., The Thermal and Electrical Conductivity of Two-Phase Systems, Ind. Eng. Chem. Fund., 1974, vol. 13, pp. 17–20.

  14. 14

    Ordonez-Miranda, J. and Alvarado-Gil, J.J., Thermal Conductivity of Nanocomposites with High Volume Fractions of Particles,Compos. Sci. Technol., 2012, vol. 72, pp. 853–857.

  15. 15

    Brusentseva, T.A. and Fomin, V.M., Modeling the Properties of a Heterogeneous Material Taking into Account the Interfacial Layer,Phys. Mesomech., 2017, vol. 20, pp. 100–104.

  16. 16

    Chernous, S.V., Shilko, D.A., and Panin, S.V., Analysis of the Mechanical Behavior of a Dispersion-Reinforced Nanocomposite. Method for Calculating Effective Elastic Characteristics, Phys. Mesomech., 2010, vol. 13, pp. 85–90.

  17. 17

    Shilko, S.V., Chernous, D.A., and Panin, S.V., Analysis of the Mechanical Behavior of a Dispersion-Reinforced Nanocomposite. Estimation of Local Inclusion Strength, Interfacial Layer, and Cross-Border Matrix Volume, Phys. Mesomech., 2011, vol. 14, no. 1, pp. 67–73.

  18. 18

    Bardakhanov, S.P., Korchagin, A.I., Kuksanov, N.K., Lavrukhin, A.V., Salimov, R.A., Fadeev, S.N., and Cherepkov, V.V., Nanopowders Obtained by Evaporating Initial Substances in an Electron Accelerator at Atmospheric Pressure, Dokl. Phys., 2006, vol. 51, pp. 353–356.

  19. 19

    Abzaev, Yu.A., Syzrantsev, V.V., and Bardakhanov, S.P., Simulation of the Structural State of Amorphous Phases in Nanoscale SiO2 Synthesized via Different Methods, Phys. Solid State, 2017, vol. 59, pp. 1874–1878.

  20. 20

    Bardakhanov, S.P., Vasiljeva, I.V., Kuksanov, N.K., and Mjakin, S.V., Surface Functionality Features of Nanosized Silica Obtained by Electron Beam Evaporation at Ambient Pressure, Adv. Mater. Sci. Eng., 2010, vol. 5, article 241695.

  21. 21

    Moiseev, Yu.N., Mostepanenko, V.M., Panov, V.I., and Sokolov, I.Yu., Experimental and Theoretical Research of Forces and Spatial Resolution in Atomic Force Microscopy, Zh. Tekh. Fiz., 1990, vol. 60, pp. 141–148.

  22. 22

    Berlin, A.A. and Basin, B.E., Osnovy adgezii polimerov (Fundamentals of Polymer Adhesion), Moscow: Khimiya, 1974.

  23. 23

    Syzrantsev, V.V., Zavyalov, A.P., and Bardakhanov, S.P., The Role of Associated Liquid Layer at Nanoparticles and Its Influence on Nanofluids Viscosity, Int. J. Heat Mass Transfer, 2014, vol. 72, pp. 501–506.

Download references

Author information



Corresponding authors

Correspondence to A. V. Nomoev, V. V. Syzrantsev, S. P. Bardakhanov, N. A. Romanov, E. Ch. Khartaeva, V. R. Gaponenko or B. R. Radnaev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nomoev, A.V., Syzrantsev, V.V., Bardakhanov, S.P. et al. Adhesion of Ethylene-Vinyl Acetate Copolymer Filled with Tarkosil Silica Nanoparticles. J. Engin. Thermophys. 30, 40–50 (2021).

Download citation