Skip to main content

Swirl-Decay Mechanism Generating Counterflows and Cells in Vortex Motion


This paper reviews counterflows, double counterflows, and circulation cells in vortex motion and argues that all these seemingly paradoxical phenomena can be caused by a common swirl-decay mechanism (SDM). It is shown that the SDM explains (a) the counterflow of water and oil in hydrocyclones, (b) the elongated counterflow of hot and cold air in vortex tubes, (c) the double counterflow occurring in vortex combustion chambers, and (d) the back flow in tubular chimneys of vortex units. The SDM also explains the development and disappearance of circulation cells, often referred to as vortex breakdown bubbles, in sealed cylindrical containers where the flow is driven by rotation of one end disk. The SDM also works in two-fluid flows modeling vortex bioreactors. In a few words, the SDM works as follows. Because of the balance of the centrifugal force and the radial gradient of pressure in a fast-swirling flow, the pressure at the rotation axis is smaller than that at the periphery. If the swirl decays downstream, the pressure grows along the axis. This axial gradient of pressure decelerates the near-axis flow and can reverse it, thus developing a local or global counterflow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. 1

    Shtern, V., Counterflows: Paradoxical Fluid Mechanics Phenomena, New York: Cambridge Univ. Press, 2012.

  2. 2

    Schultz, S., Gorbach, G. and Piesche, M., Modeling Fluid Behavior and Droplet Interactions during Liquid-Liquid Separation in Hydrocyclones, Chem. Eng. Sci., 2009, vol. 64, pp. 3935–3952.

  3. 3

    Ranque, G.J., Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot and Cold Air, Le Journal de Physique et le Radium, 1933, vol. 4, pp. 112–114.

  4. 4

    Shtern, V., Cellular Flows: Topological Metamorphoses in Fluid Mechanics, New York: Cambridge Univ. Press, 2018.

  5. 5

    Borissov, A.A., Shtern, V.N., Gonzalez, H., and Yurausquin, A., Volume Distributed High Temperature Air Combustion for Turbine,Proc. 8th Int. Symp. High Temp. Air Combustion and Gasification, Poznan, 2010, pp. 297–304.

  6. 6

    Niyogi, K., Torregrosa, M.M., Pantzali, M.N., Heynderickx, G.J., Marin, G.B., and Shtern, V.N., On the Mechanisms of Secondary Flows in a Gas Vortex Unit, AIChE J., 2018, vol. 63, pp. 1740–1756.

  7. 7

    Shtern, V. and Borissov, A., Nature of Counterflow and Circulation in Vortex Separators, Phys. Fluids, 2010, vol. 22, p. 083601.

  8. 8

    Borissov, A. and Shtern, V., Turbulent Counterflow Induced by Swirl Decay, Int. J. Energy Clean Envir., 2010, vol. 11, pp. 203–225.

  9. 9

    Vogel, H.U., Experimentelle Ergebnisse über die laminare Strömung in einem Zylindrischen Gehäuse mit darin rotierender Scheibe,Max-Planck-Inst. für Strömungsforschung, Gottingen, 1968, B. 6.

  10. 10

    Esqudier, M.P., Observation of the Flow Produced in a Cylindrical Container by a Rotating Endwall, Exp. Fluids, 1984, vol. 2, pp. 189–196.

  11. 11

    Lopez, J.M., Axisymmetric Vortex Breakdown. Part 1. Confined Swirling Flow, J. Fluid Mech., 1990, vol. 221, pp. 533–552.

  12. 12

    Herrada, M.A., Shtern, V.N., and Torregrosa, M.M., The Instability Nature of the Vogel-Escudier Flow, J. Fluid Mech., 2015, vol. 766, pp. 590–610.

  13. 13

    Moffatt, H.K., Viscous and Resistive Eddies Near a Sharp Corner,J. Fluid Mech., 1964, vol. 18, pp. 1–18.

  14. 14

    Shankar, P.N., Three-Dimensional Stokes Flow in a Cylindrical Container, Phys. Fluids, 1998, vol. 10, pp. 540–549.

  15. 15

    Hills, C.P., Eddies Induced in Cylindrical Containers by a Rotating End Wall, Phys. Fluids, 2001, vol. 13, pp. 2279–2286.

  16. 16

    Kármán, T., Über Laminare und Turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, pp. 233–252.

  17. 17

    Bödewadt, U.T., Die Drehströmung über Festem Grund, Z. Angew. Math. Mech., 1940, vol. 20, pp. 241–253.

  18. 18

    Shtern, V.N., Torregrosa, M.M., and Herrada, M.A., Effect of Swirl Decay on Vortex Breakdown in a Confined Steady Axisymmetric Flow,Phys. Fluids, 2012, vol. 24, p. 043601.

  19. 19

    Husain, H., Shtern, V., and Hussain, F., Control of Vortex Breakdown by Addition of Near-Axis Swirl, Phys. Fluids, 2003, vol. 15, pp. 271–279.

  20. 20

    Herrada, M.A. and Shtern, V.N., Vortex Breakdown Control by Adding Near-Axis Swirl and Temperature Gradients, Phys. Rev. E, 2003, vol. 68, p. 041202.

  21. 21

    Naumov, I.V., Glavny, V.G., Sharifullin, B.R., and Shtern, V.N., Formation of a Thin Circulation Layer in a Two-Fluid Rotating Flow,Phys. Rev. Fluids, 2019, vol. 4, p. 054702.

  22. 22

    Naumov, I.V., Sharifullin, B.R., and Shtern, V.N., Vortex Breakdown in the Lower Fluid of Two-Fluid Swirling Flow, Phys. Fluids, 2020, vol. 32, p. 014101.

  23. 23

    Naumov, I.V., Sharifullin, B.R., Tsoy, M.A., and Shtern, V.N., Dual Vortex Breakdown in a Two-Fluid Confined Flow, Phys. Fluids, 2020, vol. 32, p. 061706.

  24. 24

    Carrion, L., Naumov, I.V., Sharifullin, B.R., Herrada, M.A., and Shtern, V.N., Mechanism of Disappearance of Vortex Breakdown in a Confined Flow, J. Eng. Therm., 2020, vol. 29, pp. 49–66.

Download references

Author information



Corresponding author

Correspondence to I. Naumov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shtern, V., Naumov, I. Swirl-Decay Mechanism Generating Counterflows and Cells in Vortex Motion. J. Engin. Thermophys. 30, 19–39 (2021).

Download citation