Skip to main content

Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon


This paper presents experimental results on heat transfer efficiency on a flat circular heat-release surface modified using additive technology. A porous plate 500 \(\mu\)m thick, 3D-printed from copper spherical granules with an average diameter of 50 \(\mu\)m, was fixed by means of resistance soldering on a heat-release brass surface of 20 mm in diameter. The heat transfer was investigated at boiling in liquid Freon R21 under free convection conditions for the heat flux density varying from 200 to \(4.5\cdot 10^{5}\) W/m2. In different series of the experiments, the reduced pressure varied within 0.027–0.064. The experiments have shown that under conditions of activated nucleation sites, the heat transfer coefficient for a modified surface 4–5 times exceeds that for an unmodified surface. The greatest effect is observed in the region of small and medium values of the heat flux density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1

    Zing, C., Mahjoob, S., and Vafai, K., Analysis of Porous Filled Heat Exchangers for Electronic Cooling, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 268-276;

  2. 2

    Borjigin, S., Zhang, S., Ma, T., Zeng, M., and Wang, Q., Performance Enhancement of Cabinet Cooling System by Utilizing Cross-Flow Plate Heat Exchanger, Energy Convers. Manag., 2020, vol. 213, p. 112854;

  3. 3

    Colangelo, G., Favale, E., Milanese, M., de Risi, A., and Laforgia, D., Cooling of Electronic Devices: Nanofluids Contribution,Appl. Therm. Engin., 2017, vol. 127, pp. 421–435; 2017.08.042.

  4. 4

    Xie, W., Lv, X., Liu, D., Li, L., and Yao, W., Numerical Investigation of Flow Boiling in Manifold Microchannel-Based Heat Exchangers, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120493; 10.1016/j.ijheatmasstransfer.2020.120493.

  5. 5

    Wu, Z., Cao, Z., and Sundén, B., Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition, Appl. Energy, 2019, vol. 249, pp. 286–299;

  6. 6

    Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; 2020.119622.

  7. 7

    Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Therm. Engin., 2017, vol. 113, pp. 1345–1357;

  8. 8

    Das, S., Kumar, D. S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Therm. Engin., 2016, vol. 96, pp. 555–567;

  9. 9

    Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition,Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033;

  10. 10

    Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces,Exp. Therm. Fluid Sci., 2020, vol. 115, p. 110088;

  11. 11

    Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; 201714302049.

  12. 12

    Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water,Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; j.ijheatmasstransfer.2020.119399.

  13. 13

    Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns,J. Visual. Exp., 2017, vol. 122, p. e55387; doi: 10.3791/55387.

  14. 14

    Chinnov, E.A., Shatskiy, E.N., Khmel, S.Ya., Baranov, E.A., Zamchiy, V.V., Semionov, A.O., and Kabov O.A., Enhancement of Heat Transfer at Pool Boiling on Surfaces with Silicon Oxide Nanowires,IOP Conf. Series: Journal of Physics: Conf. Ser., 2017, vol. 925, p. 012033; doi: 10.1088/1742-6596/925/1/012033

  15. 15

    Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418;

  16. 16

    Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure,Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342;

  17. 17

    Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867;

  18. 18

    Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; 10.1063/1.4919916.

  19. 19

    Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High-and-Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi:10.1038/s41598-018-25843-5.

  20. 20

    Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015;

  21. 21

    Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560;

  22. 22

    Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Therm. Fluid Sci., 2020, vol. 113, p. 110025; 2019.110025.

  23. 23

    McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, no. 4000138, pp. 64–72; doi:10.1109/STHERM.1991.152914.

  24. 24

    Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72,J. Heat Transfer, 2000, vol. 122. no. 3, pp. 509–516; 1.1288708.

  25. 25

    Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50. nos. 17/18, pp. 3624–3637; 2007.02.003.

  26. 26

    Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes,Int. J. Therm. Sci., 2018, vol. 130, pp. 47–58;

  27. 27

    Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. Communications in Heat Mass Transfer, 2020, vol. 119, p. 104950;

  28. 28

    Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms,Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; j.ijheatmasstransfer.2019.06.069.

  29. 29

    Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933;

  30. 30

    Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Therm. Engin., 2019, vol. 66, no. 12, pp. 881–915;

  31. 31

    Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectronics, Instrument. Data Process., 2019, vol. 55, no. 6, pp. 554–563; doi: 10.3103/ S8756699019060049.

  32. 32

    Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163; doi: 10.1134/S1810232813040012.

  33. 33

    Spalding, D.B., Heat Exchanger Design Handbook. Heat Exchanger Theory, Hemisphere, 1983.

Download references

Author information



Corresponding author

Correspondence to E. Yu. Slesareva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.E., Slesareva, E.Y. & Pavlenko, A.N. Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon. J. Engin. Thermophys. 30, 1–13 (2021).

Download citation