Skip to main content

Numerical Simulation of Dynamics of Weakly Heated Turbulent Mixing Zone in Linearly Stratified Medium


Based on an algebraic model of Reynolds stresses and fluxes, a numerical model of the dynamics of a flat localized region of turbulent perturbations of non-zero buoyancy in a linearly stratified medium was constructed. The evolution of a weakly heated turbulent spot was considered. Presence of non-zero buoyancy leads to increase in the geometrical dimensions of the turbulent spot and generation of internal waves of greater amplitude.

This is a preview of subscription content, access via your institution.


  1. 1

    Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, vol. 1, Mechanics of Turbulence, Dover Books on Physics, 2007.

  2. 2

    Schooley, A.H., Wake Collapse in a Stratified Fluid, Science, 1967, vol. 157, no. 3787, pp. 421–423.

  3. 3

    Vlasov, Yu.N., Nekrasov, V.N., Trokhan, A.M., and Chashechkin, Yu.D., Development of Turbulent Mixing in a Fluid, J. Appl. Mech. Tech. Phys., 1973, vol. 14, no. 2, pp. 222–225.

  4. 4

    Vasiliev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Region of a Turbulized Liquid in a Stratified Medium, Fluid Dyn., 1974, vol. 9, no. 3, pp. 368–373.

  5. 5

    Trokhan, A.M. and Chashechkin, Yu.D., Generation of Internal Waves in Stratified Fluid by an Impulse Hydrodynamic Line Source (Two-Dimensional Problem), Theory of Diffraction and Propagation of Waves: Abstr. 7th All-Union Symp. on the Diffraction and Propagation of Waves, vol. 3, Moscow: USSR Acad. Sci., 1977, pp. 186–189.

  6. 6

    Vasiliev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Turbulent Mixing Zone in a Stratified Medium, Proc. Int. Seminar on Heat Transfer and Turbulent Buoyant Convection, Dubrovnik, Yugoslavia, August 30–September 4, 1976, Washington: Hemisphere, 1976, vol. 2, pp. 123–136.

  7. 7

    Lytkin, Yu.M. and Chernykh, G.G., Similarity of Flow with Respect to the Density Froude Number and Energy Balance at Evolution of Turbulent Mixing Zone in a Stratified Medium, Mathematical Problems of Continuum Mechanics: A Collection of Scientific Works, Novosibirsk: Inst. Hydrodynamics, USSR Acad. Sci., 1980, no. 47, pp. 70–89.

  8. 8

    Chernykh, G.G. and Voropayeva, O.F., Numerical Modeling of Momentumless Turbulent Wake Dynamics in a Linearly Stratified Medium, Comput. Fluids, 1999, vol. 28, no. 3, pp. 281–306.

  9. 9

    Pal, A., De Stadler, M.B., and Sarkar, S., The Spatial Evolution of Fluctuations in a Self-Propelled Wake Compared to a Patch of Turbulence, Phys. Fluids, 2013, vol. 25, pp. 095106-1-095106-20.

  10. 10

    Fernando, H.J.S., Turbulent Patches in a Stratified Shear Flow, Phys. Fluids, 2003, vol. 15, no. 10, pp. 3164–3169.

  11. 11

    Yakovenko, S.N., Thomas, T.G., and Castro, I.P., A Turbulent Patch Arising from a Breaking Internal Wave, J. Fluid Mech., 2011, vol. 677, pp. 103–133.

  12. 12

    Chernykh, G.G. and Voropaeva, O.F., Dynamics of a Momentumless Turbulent Wake in a Shear Flow, J. Eng. Therm., 2015, vol. 24, no. 1, pp. 12–21.

  13. 13

    Voropaeva, O.F. and Chernykh, G.G., The Dynamics of Local Zones of Turbulized Fluid under the Background Disturbances of Hydrophysical Fields, Fund. Prikl. Gidrofiz., 2015, vol. 8, no. 4, pp. 12–17.

  14. 14

    Voropaeva, O.F. and Chernykh, G.G., Dynamics of Momentumless Turbulent Wake in a Shear Flow of a Linearly Stratified Medium, Thermophys. Aeromech., 2016, vol. 23, no. 1, pp. 59–68.

  15. 15

    Chernykh, G.G. and Fomina, A.V., Dynamics of Cylindrical Turbulent Spot in a Longitudinal Shear Flow of a Passive Stratified Fluid, Sci. Evolution, 2016, vol. 1, no. 2, pp. 102–107.

  16. 16

    Moshkin, N.P., Fomina, A.V., and Chernykh, G.G., The Dynamics of a Cylindrical Zone of Turbulent Mixing in a Longitudinal Shear Flow of a Linearly Stratified Medium, Thermophys. Aeromech., 2019, vol. 26, no. 1, pp. 37–45.

  17. 17

    Fomina, A.V. and Chernykh, G.G., Numerical Modelling of the Dynamics of Cylindrical Turbulent Patch in a Longitudinal Shear Flow, Math. Models Computer Simulat., 2019, vol. 31, no. 2, pp. 112–118.

  18. 18

    Antropov, I.V. and Kronrod, V.A., On Evolution of a Thermal in a Stratified Medium in Dependence on Initial Conditions, Izv. AN SSSR, FAO, 1989, vol. 25, no. 12, pp. 1261–1266.

  19. 19

    Nartov, V.P. and Chernykh, G.G., On Numerical Modelling of Fluid Flow Generated by Collapse of Mixed Region in Stratified Medium, Preprint of the Institute of Theoretical and Applied Mechanics, USSR Acad. Sci., Novosibirsk, 1982.

  20. 20

    Vorozhtsov, E.V. and Yanenko, N.N., Methods for the Localization of Singularities in Numerical Solutions of Gas Dynamics Problems, New York: Springer-Verlag, 1989.

  21. 21

    Moshkin, N.P., Chernykh, G.G., and Narong, K., On the Performance of High Resolution Non-Oscillating Advection Schemes in the Context of the Flow Generated by a Mixed Region in a Stratified Fluid, Math. Computers Simulat., 2016, vol. 127, pp. 203–219.

  22. 22

    Guschchin, V.A. and Matyushin, P.V., Mathematical Modelling in 3D Incompressible Fluid Flows, Mat. Mod., 2006, vol. 18, no. 5, pp. 5–20.

  23. 23

    Li, Y., Choi, J.I., Choic, Y., and Kim, J., A Simple and Efficient Outflow Boundary Condition for the Incompressible Navier–Stokes Equations, Engin. Appl. Computat. Fluid Mech., 2017, vol. 11, no. 1, pp. 69–85; DOI:10.1080/19942060.2016.1247296.

  24. 24

    Ol’shanskii, M.A. and Staroverov, V.M., On Simulation of Outflow Boundary Conditions in Finite Difference Calculations for Incompressible Fluid, Int. J. Numer. Meth. Fluids, 2000, vol. 33, pp. 499–534; doi:10.1002/1097-0363(20000630)33:4<499::AID-FLD193.0.CO;2-7.

  25. 25

    Rodi, W., Turbulence Models and Their Application in Hydraulics, University of Karlsruhe, 1980.

  26. 26

    Rodi, W., Examples of Calculation Methods for Flow and Mixing in Stratified Fluids, J. Geophys. Res., 1987, vol. 92, no. C5, pp. 5305–5328.

  27. 27

    Chernykh, G.G., Fomina, A.V., and Moshkin, N.P., Numerical Simulation of Dynamics of Turbulent Wakes behind Towed Bodies in Linearly Stratified Media, J. Eng. Therm., 2009, vol. 18, no. 4, pp. 279–305.

  28. 28

    Lin, J.T. and Pao, Y.H., Wakes in Stratified Fluids, Annual Rev. Fluid Mech., 1979, vol. 11, pp. 317–338.

  29. 29

    Hassid, S., Collapse of Turbulent Wakes in Stable Stratified Media, J. Hydronautics, 1980, vol. 14, no. 1, pp. 25–32.

Download references


This work was supported by RFBR (project no. 17-01-00332).

Author information



Corresponding authors

Correspondence to G. G. Chernykh, A. V. Fomina or N. P. Moshkin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chernykh, G.G., Fomina, A.V. & Moshkin, N.P. Numerical Simulation of Dynamics of Weakly Heated Turbulent Mixing Zone in Linearly Stratified Medium. J. Engin. Thermophys. 29, 674–685 (2020).

Download citation