Skip to main content

Analytical Modeling of Heat and Mass Transfer of Radiative MHD Casson Fluid over an Exponentially Permeable Stretching Sheet with Chemical Reaction

Abstract

Aspire of this study is to study the effect of heat source, suction/injection, and chemical reaction on dissipative and radiative MHD flow of a Casson fluid over an exponentially permeable stretching sheet. Series solutions are obtained for converted non-dimensional ordinary differential equations using an analytical technique known as the homotopy analysis method (HAM). A decisive approach of convergence of series solutions is also furnished. The acquired results are in excellent correlation with the previous results. The nature of different parameters like the magnetic parameter, exponential parameter, suction/injection parameter, the Casson parameter, radiation parameter, the Prandtl number, the Eckert number, heat source parameter, Schmidt number, and chemical reaction parameter are discussed using tables and graphs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

REFERENCES

  1. 1

    Rajagopal, K.R., A Note on Unsteady Unidirectional Flows of a Non-Newtonian Fluid, Int. J. Non-Lin. Mech., 1982, vol. 17, pp. 369–373.

  2. 2

    Rajagopal, K.R., On the Creeping Flow of the Second-Order Fluid, J. Non-Newtonian Fluid Mech., 1984, vol. 15, pp. 239–246.

  3. 3

    Siddiqui, A.M. and Kaloni, P.N., Certain Inverse Solutions of a Non-Newtonian Fluid, Int. J. Non-Linear Mech., 1986, vol. 21, pp. 459–473.

  4. 4

    Hayat, T., Asghar, S., and Siddiqui, A.M., Some Unsteady Unidirectional Flows of a Non-Newtonian Fluid, Int. J. Engin. Sci., 2000, vol. 38, pp. 337–346.

  5. 5

    Vieru, D., Fetecau, C., and Fetecau, C., Exact Solutions for the Flow of an Oldroyd-B Fluid due to an Infinite Flat Plate,J. Appl. Math. Phys., 2008, vol. 59, pp. 834–847.

  6. 6

    Aliakbar, V., Alizadeh-Pahlavan, A., and Sadeghy, K., The Influence of Thermal Radiation on MHD Flow of Maxwellian Fluids above Stretching Sheets, Comm. Nonlin. Sci. Numer. Simul., 2009, vol. 14, pp. 779–794.

  7. 7

    Hayat, T. and A. Kara, H., Coutte Flow of a Third-Grade Fluid with Variable Magnetic Field, Math. Comput. Model., 2006, vol. 43, pp. 132–137.

  8. 8

    Nandeppanavar, M.M., Vajravelu, K., and Abel, M.S., Heat Transfer in MHD Viscoelastic Boundary Layer Flow over a Stretching Sheet with Thermal Radiation and Non-Uniform Heat Source/Sink,Comm. Nonlin. Sci. Numer. Simul., 2011, vol. 16, pp. 3578–3590.

  9. 9

    Sahoo, B., Flow and Heat Transfer of a Non-Newtonian Fluid past a Stretching Sheet with Partial Slip, Comm. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 602–615.

  10. 10

    Hamad, M.A.A., Analytical Solution of Natural Convection Flow of a Nano Fluid over a Linearly Stretching Sheet in the Presence of Magnetic Field, Int. Comm. Heat Mass Transfer, 2011, vol. 38, pp. 487–492.

  11. 11

    Nadeem, S., Ul Haq, R., and Khan, Z.H., Numerical Solution of Non-Newtonian Nanofluid over a Stretching Sheet, Appl. Nanosci., 2014, vol. 4, pp. 625–631.

  12. 12

    Jafar, K., Ishak, A., and Nazar, R., MHD Stagnation-Point Flow over a Nonlinearly Stretching/Shrinking Sheet, J. Aerospace Engin., 2013, vol. 26, pp. 829–834.

  13. 13

    Mustafa, M., Viscoelastic Flow and Heat Transfer over a Non-Linearly Stretching Sheet: Oham Solution, J. Appl. Fluid Mech., 2016, vol. 9, pp. 1321–1328.

  14. 14

    Gorla, R.S.R. and Kumari, M., Mixed Convection Flow of a Non-Newtonian Nanofluid over a Non-Linearly Stretching Sheet,J. Nanofluids, 2012, vol. 1, pp. 186–195.

  15. 15

    Ellahi, R., The Effects of MHD and Temperature Dependent Viscosity on the Flow of Non-Newtonian Nanofluid in a Pipe: Analytical Solutions, Appl. Math. Model., 2013, vol. 37, pp. 1451–1467.

  16. 16

    Raju, C.S.K. and Sandeep, N., Heat and Mass transfer in MHD Non-Newtonian Bio-Convection Flow over a Rotating Cone/Plate with Cross Diffusion, J. Mol. Liq., 2016, vol. 215, pp. 115–126.

  17. 17

    Mabood, F., Ibrahim, S.M., Rashidi, M.M., Shadloo, M.S., and Lorenzini, G., Non-Uniform Heat Source/Sink and Soret Effects on MHD Non-Darcian Convective Flow past a Stretching Sheet in a Micropolar Fluid with Radiation, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 674–682.

  18. 18

    Casson, N., A Flow Equation for Pigment Oil Suspensions of the Printing Ink Type, in Rheology of Disperse Systems, Mill, C.C., Ed., New York: Pergamon, 1959, pp. 84–104.

  19. 19

    Dash, R.K., Mehta, K.N., and Jayaraman, G., Effect of Yield Stress on the Flow of a Casson Fluid in a Homogeneous Porous Medium Bounded by a Circular Tube, Appl. Sci. Res., 1996, vol. 57, pp. 133–149.

  20. 20

    Mukhopadhyay, S., Casson Fluid Flow and Heat Transfer over a Nonlinear Surface, Chinese Physics B, 2013, vol. 22, p. 074701.

  21. 21

    Tamoor, M., Waqas, M., Khan, M.I., Alsaedi, A., and Hayat, T., Magnetohydrodynamic Flow of Casson Fluid over a Stretching Cylinder, Res. Phys., 2017, vol. 7, pp. 498–502.

  22. 22

    Madhy, A., Unsteady MHD Slip Flow of a Non-Newtonian Casson Fluid due to Stretching Sheet with Suction or Blowing Effect,J. Appl. Fluid Mech., 2016, vol. 9, pp. 785–793.

  23. 23

    Mustafa, M. and Khan, J.A., Model for Flow of Casson Nanofluid past a Non-Linearly Stretching Sheet Considering Magnetic Effects, AIP Adv., 2015, vol. 5, p. 077148.

  24. 24

    Ibrahim, W. and Makinde, O.D., Magnetohydrodynamic Stagnation Point Flow and Heat Transfer of Casson Nanofluid past a Stretching Sheet with Slip and Convective Boundary Conditions, J. Aerospace Engin., 2016, vol. 29, p. 04015037.

  25. 25

    Hayat, T., Shehzad, S.A., and Alsaedi, A., Soret and Dufour Effects on Magnetohydrodynamic (MHD) Flow of Casson Fluid,Appl. Math. Mech., 2012, vol. 33, 1301–1312.

  26. 26

    Pal, D., Roy, N., and Vajravelu, K., Effects of Thermal Radiation and Ohmic Dissipation on MHD Casson Nanofluid over a Vertical Non-Linear Stretching Surface Using Scaling Group Transformation, Int. J. Mech. Sci., 2016, vol. 114, pp. 257–267.

  27. 27

    Nadeem, S., Ul Haq, R., and Lee, C., MHD Flow of a Casson Fluid over an Exponentially Shrinking Sheet, Scientia Iranica, 2012, vol. 19, pp. 1550–1553.

  28. 28

    Pramanik, S., Casson Fluid Flow and Heat Transfer past an Exponentially Porous Stretching Surface in Presence of Thermal Radiation, Ain Shams Engin. J., 2014, vol. 5, pp. 205–212.

  29. 29

    Ibrahim, S.M., Lorenzini, G., Vijaya Kumar, P., and Raju, C.S.K., Influence of Chemical Reaction and Heat Source on Dissipative MHD Mixed Convection Flow of a Casson Nanofluid over a Nonlinear Permeable Stretching Sheet, Int. J. Heat Mass Transfer, 2017, vol. 111, pp. 346–355.

  30. 30

    Liao, S.J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Boca Raton: Chapman and Hall, CRC Press, 2011.

  31. 31

    Nadeem, S., MHD Three Dimensional Boundary Layer Flow of Casson Nanofluid past a Linearly Stretching Sheet with Convective Boundary Condition, IEEE Transact. Nanotech., 2014, vol. 13, pp. 109–115.

  32. 32

    Hayat, T., Shehzad, S.A., Ashraf, M.B., and Alsaedi, A., Magnetohydrodynamic Mixed Convection Flow of Thixotropic Fluid with Thermophoresis and Joule Heating, J. Thermophys. Heat Transfer, 2014, vol. 27, pp. 733–740.

  33. 33

    Liao, S.J., Homotopy Analysis Method in Nonlinear Differential Equations, Heidelberg: Springer and Higher Education Press, 2012.

  34. 34

    Abbasbandy, S., The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer, Phys. Lett. A, 2006, vol. 360, pp. 109–113.

  35. 35

    Ibrahim, S.M., Kumar, P.V., Lorenzini, G., and Mabood, F., Numerical Study of the Onset of Chemical Reaction and Heat Source on Dissipative MHD Stagnation Point Flow of Casson Nanofluid over a Nonlinear Stretching Sheet with Velocity Slip and Convective Boundary Conditions, J. Eng. Thermophys., 2017, vol. 26, pp. 256–271.

  36. 36

    Kameswaran, P.K., Narayana, M., Sibanda, P., and Makanda, G., On Radiation Effects on Hydromagnetic Newtonian Liquid Flow due to an Exponentially Stretching Sheet, Boundary Value Probl., 2012, vol. 2012, pp. 1–16.

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. M. Ibrahim, P. V. Kumar or G. Lorenzini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.M., Kumar, P.V. & Lorenzini, G. Analytical Modeling of Heat and Mass Transfer of Radiative MHD Casson Fluid over an Exponentially Permeable Stretching Sheet with Chemical Reaction. J. Engin. Thermophys. 29, 136–155 (2020). https://doi.org/10.1134/S1810232820010105

Download citation