Skip to main content

Title Analytical Study of Conjugated Heat Transfer of a Microchannel Fluid Flow between Two Parallel Plates

Abstract

The conjugated temperature distributions of a microchannel fluid flow between two semi-infinite parallel plates are obtained analytically. The variables separation and transformation techniques are implemented to introduce the degenerate hypergeometric differential equation, the solution of which is given in terms of Kummer’s functions. The eigenvalues of the corresponding transcendental characteristic equation are obtained using a mathematical solver software package. Non-dimensional analysis of the governing equations introduced the parameter of “solid-fluid heat conduction ratio” \(k_k\). Values of this parameter are considered to present two limiting case solutions, namely, the adiabatic boundary solution, when \(k_k\approx 0\) and the isothermal boundary solution, when \(k_k> 100\). The Nusselt number \(Nu\) of the two limiting solutions is obtained and compared accurately with the corresponding values from the literature. The effect of the Knudsen number \(Kn\), the Biot number \(Bi\), and the conductivity ratio \(k_k\) on the temperature, temperature jump, and the Nusselt number is investigated. It is found that the temperature jump near the flow entrance becomes more significant with increase in \(Kn\), \(Bi\), or \(k_k\). On the other hand, the Nusselt number is found to increase with growing \(Kn\) and decrease with increasing \(Bi\) or \(k_k\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

REFERENCES

  1. 1

    Graetz, L., Uber die Wärmeleitungfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids), Part 1, Ann. Phys. Chem., 1883, vol. 18, pp. 79–94.

  2. 2

    Graetz, L., Uber die Wärmeleitungfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids), Part 2, Ann. Phys. Chem., 1885, vol. 25, pp. 337–357.

  3. 3

    Nusselt, W., Die abhängigkeit der wärmeübergangszahl von der Rohrlänge (The Dependence of the Heat Transfer Coefficient on the Tube Length), VDI, 1910, vol. Z54, pp. 1154–1158.

  4. 4

    Shah, A.L.R.K., Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, Academic Press, 1978, pp. 78–138.

  5. 5

    Mikhailov, M.D. and Cotta, R.M., Mixed-Symbolic Computation of Convective Heat Transfer with Slip Flow in Microchannels,Int. Comm. Heat Mass Transfer, 2005, vol. 32, pp. 341–384.

  6. 6

    Jeong, H.E. and Jeong, J.T., Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel,Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 2151–2157.

  7. 7

    Aydın, O. and Avcı, M., Analysis of Micro-Graetz Problem in a Microtube, Nanoscale Microscale Thermophys. Eng., 2006, vol. 10, pp. 345–358.

  8. 8

    Çetin, B., Yazicioglu, A.G., and Kakaç, S., Slip-Flow Heat Transfer in Microtubes with Axial Conduction and Viscous Dissipation—An Extended Graetz Problem, Int. J. Therm. Sci., 2009, vol. 48, pp. 1673–1678.

  9. 9

    Aydın, O. and Avcı, M., Analysis of Laminar Heat Transfer in Micro-Poiseuille Flow, Int. J. Therm. Sci., 2007, vol. 46, pp. 30–37.

  10. 10

    Aydın, O. and Avcı, M., Heat and Fluid Flow Characteristics of Gases in Micropipes, Int. J. Heat Mass Transfer, 200, vol. 649, pp. 1723–1730.

  11. 11

    Avcı, M. and Aydın, O., Laminar Forced Convection Slip-Flow in a Micro-Annulus between Two Concentric Cylinders, Int. J. Heat Mass Transfer, 2008, vol. 51, pp. 3460–3467.

  12. 12

    Lee, P. and Garimella, S.G., Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3060–3067.

  13. 13

    Kuddusi, L. and Egrican, N., Prediction of Heat Transfer Characteristics in Rectangular Microchannels for Slip Flow Regime and H1 Boundary Condition, Int. J. Therm. Sci., 2005, vol. 44, pp. 513–520.

  14. 14

    Kuddusi, L., Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for All Versions of Constant Wall Temperature, Int. J. Therm. Sci., 2007, vol. 46, pp. 998–1010.

  15. 15

    Kuddusi, L., and Cetegen, E., Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for All Versions of Constant Heat Flux, Int. J. Heat Fluid Flow, 2007, vol. 28, pp. 777–786.

  16. 16

    Sadeghi, A. and Saidi, M.H., Second Law Analysis of Slip Flow Forced Convection through a Parallel Plate Microchannel,Nanoscale Microscale Thermophys. Eng., 2010, vol. 14, pp. 209–228.

  17. 17

    Baghani, M., Sadeghi, A., and Baghani, M., Gaseous Slip Flow Forced Convection in Microducts of Arbitrary but Constant Cross Section, Nanoscale Microscale Thermophys. Eng., 2014, vol. 18, no. 4, pp. 354–372.

  18. 18

    van Rij, J., Ameel, T., and Harman, T., The Effect of Viscous Dissipation and Rarefaction on Rectangular Microchannel Convective Heat Transfer, Int. J. Therm. Sci., 2009, vol. 48, pp. 271–281.

  19. 19

    Mahulikar, S.P., Gulhane, N.P., Pradhan, S.D., Hrisheekesh, K., and Prabhu, S.V., Pressure Drop Characteristics in Continuum-Based Laminar Compressible Microconvective Flow,Nanoscale Microscale Therm. Eng., 2012, vol. 16, no. 3, pp. 181–197.

  20. 20

    Morini, G.L., Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts with Constant Axial Heat Flux, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 5, pp. 741–755.

  21. 21

    Wang, X.S., Dagan, Z., and Jiji, L.M., Conjugated Heat Transfer between a Laminar Impinging Liquid Jet and a Solid Disk,Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 2189–2197.

  22. 22

    Olek, S., Unsteady Conjugated Heat Transfer in Laminar Pipe Flow, Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1450–1491.

  23. 23

    Alnimr, A. and El-shaarawi, M.A.I., Analytical Solutions for Transient Conjugated Heat Transfer in Parallel Plate and Circular Duct, Int. Comm. Heat Mass Transfer, 1992, vol. 19, pp. 869–878.

  24. 24

    Yan, W., Transient Conjugated Heat Transfer in Channel Flow with Convection from the Ambient, Int. J. Heat Mass Transfer, 1993, vol. 36, no. 5, pp. 1295–1301.

  25. 25

    Bilir, S., Transient Conjugated Heat Transfer in Pipes Involving Two-Dimensional Wall and Axial Fluid Conduction,Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 1781–1788.

  26. 26

    Mathei, R. and Markides, C.N., Heat Transfer Augmentation in Unsteady Conjugate Thermal System, Part I: Semi-Analytical 1-D Framework, Int. J. Heat Mass Transfer, 2013, vol. 56, pp. 802–818.

  27. 27

    Bilgen, E., Conjugated Heat Transfer by Conduction and Natural Convection on a Heated Vertical Wall, Appl. Therm. Eng., 2009, vol. 29, pp. 334–339.

  28. 28

    Juncu, G., Unsteady Conjugated Forced Convection Heat/Mass Transfer from a Finite Plate, Int. J. Therm. Sci., 2008, vol. 47, pp. 972–984.

  29. 29

    Pozzi, A. and Tognaccini, R., Conjugated Heat Transfer in Unsteady Channel Flows, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 4019–4027.

  30. 30

    Machado, J.F.B. et al., A Simplified Model with a Hybrid Analytical-Numerical Solution for Predicting the Unsteady Conjugate Heat Transfer Process in Pipelines, Numerical Heat Transfer, Part B: Fundamentals, Int. J. Comput. Methodol., 2011, vol. 60, pp. 18–33.

  31. 31

    Ambatipudi, K.K. and Rahman, M.M., Analysis of Conjugate Heat Transfer in Microchannel Heat Sinks, Num. Heat Transfer, Part A, 2000, vol. 37, pp. 711–731.

  32. 32

    Harms, T.M., Heat Transfer and Fluid Flow in Deep Rectangular Liquid-Cooled Microchannels Etched in a (110) Silicon Substrate, Master Thesis, University of Cincinnati, Cincinnati, OH, 1997.

  33. 33

    Zhang, S.X., He, Y.L., Lauriat, G., and Tao, W.Q., Numerical Studies of Simultaneously Developing Laminar Flow and Heat Transfer in Microtubes with Thick Wall and Constant Outside Wall Temperature,Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 3977–3989.

  34. 34

    Nonino, C., Savino, S., Del Giudice, S., and Mansutti, L., Conjugate Forced Convection and Heat Conduction in Circular Microchannels, Int. J. Heat Fluid Flow, 2009, vol. 30, pp. 823–830.

  35. 35

    Avcı, M., Aydın, O., and Arıcı, M.E., Conjugate Heat Transfer with Viscous Dissipation in a Microtube, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 5302–5308.

  36. 36

    Kabar, Y., Bessaih, R., and Rebay, M., Conjugate Heat Transfer with Rarefaction in Parallel Plates Microchannel,Superlatt. Microstruct., 2013, vol. 60, pp. 370–388.

  37. 37

    Polyanin, A.D. and Zaitsev, V.F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed., Chapman and Hall/CRC, 2002.

  38. 38

    Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, 1964.

  39. 39

    Incropera, F.P., Dewitt, D. P., Bergman, T. L., and Lavine, A.S., Fundamentals of Heat and Mass Transfer, 2nd ed., Wiley, 2007.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Al-shyyab.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-shyyab, A.S., Darwish, F.H., Al-Nimr, M.A. et al. Title Analytical Study of Conjugated Heat Transfer of a Microchannel Fluid Flow between Two Parallel Plates. J. Engin. Thermophys. 29, 114–135 (2020). https://doi.org/10.1134/S1810232820010099

Download citation