Skip to main content

Thermal Diffusivity Measurement of Cerium in the Temperature Range of 300-1800 K

Abstract

The thermal conductivity of cerium in the solid and liquid states, including the phase transition, in the temperature range of 293–1800 K was measured for the first time by the laser-pulse method with an accuracy of 2–5%. Comparison of the results with the available literature data was made. Data for the 293–400 K temperature range were obtained for the first time. Reference tables on the thermal conductivity and thermal diffusivity of cerium were developed for scientific and practical use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

REFERENCES

  1. 1

    Powell, R.W. and Jolliffe, B.W., The Thermal Conductivities of Scandium and Some Rare Earth Metals, Phys. Lett., 1965, vol. 14, no. 3, pp. 171/172.

  2. 2

    Jolliffe, B.W., Tye, R.P., and Powell, R.W., The Thermal and Electrical Conductivities of Scandium, Yttrium and Manganese and Twelve Rare-Earth Metals, at Normal Temperature, J. Less Common Met., 1966, vol. 2, pp. 388–394.

  3. 3

    Spedding, F.H. and Legvold, S., Quarterly Summary Research Report in Physics for April, May and June 1954 by Ames Laboratory Staff: ISC-50S, Ames Laboratory at Iowa State College, 1954.

  4. 4

    Atalla, S.R., Banchila, S.N., and Filippov, L.P., Investigation of the Complex of Thermal Properties of Liquid Metals at High Temperatures, High Temp., 1972, vol. 10, no. 1, pp. 72–76.

  5. 5

    Mardikin, I.P. and Vertman, A.A., Thermal Properties of Liquid Cerium, Izv. AN SSSR, Metally, 1972, no. 1, pp. 95–98.

  6. 6

    Novikov, I.I. and Mardykin, I.P., Thermal Properties of Lanthanides at High Temperature, Teplofiz. Vys. Temp., 1973, vol. 11, no. 3, pp. 527–532.

  7. 7

    Filippow, L.P., Investigation of Thermal Properties in Fabric at the Moscow University, Int. J. Heat Mass Transfer, 1973, vol. 16, no. 5, pp. 865–885.

  8. 8

    Wittenberg, L.J., Thermal Diffusivities of Lanthanum, Cerium and Plutonium at High Temperatures, Thermochim. Acta, 1973, vol. 7, no. 1, pp. 13–23.

  9. 9

    Zinov’ev, V.E., Geld, P.V., and Sokolov, A.L., Kinetic Properties of Cerium, Praseodymium, Neodymium and Europium at High Temperatures, Phys. Solids, 1976, vol. 18, no. 5, pp. 1329–1332.

  10. 10

    Kurichenko, A.A., Ivliev, A.D., and Zinov’ev, V.E., Thermal and Kinetic Properties of Light Rare Earth Metals near High Temperature Structural Transition Points, Solid State Commun., 1985, vol. 56, no. 12, pp. 1065–1068.

  11. 11

    Kurichenko, A.A., Ivliev, A.D., and Zinov’ev, V.E., Study of the Thermo-Physical Properties of Rare-Earth-Metals with the Use of Molecular Laser-Radiation, High Temp., 1986, vol. 24, no. 3, pp. 493–499.

  12. 12

    Safonov, A.N., Thermal Diffusivity and Heat Capacity of Light Rare Earth Metals at High Temperatures, Cand. Sci. Diss., Vakhrushev Sverdlovsk Mining Institute, Sverdlovsk, 1990, p. 172.

  13. 13

    Powell, R.W., Experiments Using a Simple Thermal Comparator for Measurement of Thermal Conductivity, Surface Roughness and Thickness of Foils or of Surface Deposits, J. Sci. Instrum., 1957, vol. 34, no. 12, pp. 485–492.

  14. 14

    Zinov’ev, V.E., Handbook of Thermophysical Properties of Metals at High Temperatures, New York: Nova Science Publishers, 1996.

  15. 15

    https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-427/.

  16. 16

    Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Diffusivity and Thermal Conductivity of Neodymium in the Temperature Range 293 to 1773 K, J. Eng. Thermophys., 2018, vol. 27, no. 4, pp. 399–404.

  17. 17

    Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Conductivity and Thermal Diffusivity of Samarium in the Temperature Range of 293–1773 K, Thermophys. Aeromech., 2018, vol. 25, no. 5, pp. 735–740.

  18. 18

    Cape, J.A. and Lehman, G.W., Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity,J. Appl. Phys., 1963, vol. 34, no. 7, pp. 1909–1913.

  19. 19

    Blumm, J. and Opfermann, J., Improvement of the Mathematical Modeling of Flash Measurements, High Temp.-High Press., 2002, vol. 34, no. 5, pp. 515–521.

  20. 20

    Stankus, S.V. and Khairulin, R.A., Thermal Properties of Lanthanoides in Liquid and Solid States, J. Eng. Thermophys., 1991, vol. 1, no. 3, pp. 193–210.

  21. 21

    Samoshkin, D.A., Agazhanov, A.Sh., Savchenko, I.V., and Stankus, S.V., Thermal Diffusivity of Gadolinium in the Temperature Range of 287–1277 K, High Temp., 2017, vol. 55, no. 2, pp. 221–225.

  22. 22

    Samoshkin, D.A., Agazhanov, A.Sh., Savchenko, I.V., Stankus, S.V., and Yatsuk, O.S., The Thermal Diffusivity of Dysprosium in the Temperature Range 293–1273 K, Persp. Mater., 2016, no. 10, pp. 76–80.

  23. 23

    Savitskiy, E.M., Terekhova, V.F., and Naumkin, O.P., Physico-Chemical Properties of the Rare-Earth Metals, Scandium, and Yttrium, Soviet Phys.–Uspekhi, 1963, vol. 6, pp. 123–124.

  24. 24

    Stankus, S.V. and Savchenko, I.V., Laser Flash Method for Measurement of Liquid Metals Heat Transfer Coefficients,Thermophys. Aeromech., 2009, vol. 16, no. 4, pp. 585–592.

  25. 25

    Stankus, S.V. and Basin, A.S., Density, Thermal Expansion and Temperature of Phase Transformations of Cerium in the Solid and Liquid State, in Teplofizicheskie svoistva rastvorov (Thermophysical Properties of Solutions), Novosibirsk: IT SB RAS, 1983, pp. 87–98.

  26. 26

    Hultgren, R., Desai, R.D., and Hawkins, D.T., Selected Values of Thermodynamic Properties of Elements, Ohio: Am. Soc. Metals, 1973, p. 636.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-79-10237.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Savchenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savchenko, I.V., Samoshkin, D.A. & Stankus, S.V. Thermal Diffusivity Measurement of Cerium in the Temperature Range of 300-1800 K. J. Engin. Thermophys. 29, 42–48 (2020). https://doi.org/10.1134/S181023282001004X

Download citation