Skip to main content

Statistical Signature of Vortex Filaments in Classical Turbulence: Dog or Tail?


The title of this paper echoes the title of a paragraph in the famous book by Frisch on classical turbulence. In the relevant chapter, the author discusses the role of the statistical dynamics of vortex filaments in the fascinating problem of turbulence and the possibility of a breakthrough in constructing an advanced theory. This aspect arose due to the large amount of evidence, both experimental and numerical, that the vorticity field in turbulent flows has a pronounced filamentary structure. In fact, there is unquestionably a strong relationship between the dynamics of chaotic vortex filaments and turbulent phenomena. However, the question arises as to whether the basic properties of turbulence (cascade, scaling laws, etc.) are a consequence of the dynamics of the vortex filaments (the `dog' concept) or the latter have only a marginal significance (the `tail' concept). Based on well-established results regarding the dynamics of quantized vortex filaments in superfluids, we illustrate how these dynamics can lead to the main elements of the theory of turbulence. We cover key topics such as the exchange of energy between different scales, the possible origin of Kolmogorov-type spectra, and the free decay behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1

    Frisch, U., Turbulence, Cambridge: Cambridge Univ. Press, 1995.

  2. 2

    Chorin, A., Vorticity and Turbulence, Applied Mathematical Sciences, Springer-Verlag, 1994.

  3. 3

    Migdal, A.A., Fokker–Planck Vortex Equation, Vopr. Kib., 1986, p. 122.

  4. 4

    Tsubota, M. and Kobayashi, M., Energy Spectra of Quantum Turbulence, in Progress in Low Temperature Physics: Quantum Turbulence, vol. 16, Elsevier, 2009, pp. 1–43.

  5. 5

    Vincent, A. and Meneguzzi, M., The Spatial Structure and Statistical Properties of Homogeneous Turbulence, J. Fluid Mech., 1991, vol. 225, pp. 1–20.

  6. 6

    Schwarz, K.W., Three-Dimensional Vortex Dynamics in Superfuid \(^{4}\)He: Homogeneous Superfluid Turbulence, Phys. Rev. B, 1988, vol. 38, no. 4, pp. 2398–2417.

  7. 7

    Chorin, A.J., Vortex Methods and Vortex Motion, Philadelphia, PA: SIAM, 1991, p. 195.

  8. 8

    Leonard, A., Vortex Methods for Flow Simulation, J. Comput. Phys., 1980, vol. 37, iss. 3, pp. 289–335.

  9. 9

    Siggia, E.D., Collapse and Amplification of a Vortex Filament,Phys. Fluids, 1985, vol. 28, pp. 794–805.

  10. 10

    Klein, R. and Majda, A.J., Self-Stretching of a Perturbed Vortex Filament I. The Asymptotic Equation for Deviations from a Straight Line, Phys. D: Nonlin. Phen., 1991, vol. 49, no. 3, pp. 323–353.

  11. 11

    Hansen, A. and Nelkin, M., Absence of Small-Scale Structure in Homogeneous Superfluid Turbulence, Phys. Rev. B, 1986, vol. 34, no. 7, pp. 4894–4896.

  12. 12

    Nemirovskii, S.K. and Fiszdon, W., Chaotic Quantized Vortices and Hydrodynamic Processes in Superfluid Helium, Rev. Mod. Phys., 1995, vol. 67, no. 1. pp. 37–84.

  13. 13

    Eyink, G.L. and Sreenivasan, K.R., Onsager and the Theory of Hydrodynamic Turbulence, Rev. Mod. Phys., 2006, vol. 78, pp. 87–135.

  14. 14

    Moffatt, H.K., Kida, S., and Ohkitani, K., Stretched Vortices—The Sinews of Turbulence; Large-Reynolds-Number Asymptotics,J. Fluid Mech., 1994, vol. 259, pp. 241–264.

  15. 15

    Vinen, W.F., Classical Character of Turbulence in a Quantum Liquid, Phys. Rev. B, 2000, vol. 61, no. 2, pp. 1410–1420.

  16. 16

    Kobayashi, M. and Tsubota, M., Kolmogorov Spectrum of Superfluid Turbulence: Numerical Analysis of the Gross–Pitaevskii Equation with a Small-Scale Dissipation, Phys. Rev. Lett., 2005, vol. 94, no. 6, p. 065302.

  17. 17

    Vinen, W., Quantum Turbulence: Achievements and Challenges,J. Low Temp. Phys., 2010, vol. 161, pp. 419–444.

  18. 18

    Skrbek, L. and Sreenivasan, K.R., Developed Quantum Turbulence and Its Decay, Phys. Fluids., 2012, vol. 24, no. 1, p. 011301.

  19. 19

    Tsubota, M., Kobayashi, M., and Takeuchi, H., Quantum Hydrodynamics, Phys. Rep., 2013, vol. 522, no. 3, pp. 191–238.

  20. 20

    Barenghi, C.F., Skrbek, L., and Sreenivasan, K.R., Introduction to Quantum Turbulence, Procs. Nat. Acad. Sci., 2014, vol. 111, no. 1, pp. 4647–4652.

  21. 21

    Walmsley, P.M., Golov, A.I., Hall, H.E., Levchenko, A.A., and Vinen, W.F., Dissipation of Quantum Turbulence in the Zero Temperature Limit, Phys. Rev. Lett., 2007, vol. 99, p. 265302.

  22. 22

    Kleinert, H., Gauge Fields in Condenced Matter Physics, Singapore: World Scientific, 1990.

  23. 23

    Nemirovskii, S.K., Gaussian Model of Vortex Tangle in He II,Phys. Rev. B, 1998, vol. 57, no. 10, pp. 5972–5986.

  24. 24

    Nemirovskii, S.K., Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation, 2006, Phys. Rev. Lett., vol. 96, no. 1, p. 015301.

  25. 25

    Nemirovskii, S.K., Kinetics of a Network of Vortex Loops in He II and a Theory of Superfluid Turbulence, Phys. Rev. B, 2008, vol. 77, no. 21, p. 214509.

  26. 26

    Nemirovskii, S.K., Quantum Turbulence: Theoretical and Numerical Problems, Phys. Rep., 2013, vol. 524, no. 3, pp. 85–202.

  27. 27

    Zakharov, V.E., L’vov, V.S., and Falkovich, G.,Kolmogorov Spectra of Turbulence I, Berlin: Springer-Verlag, 1992.

  28. 28

    Feynman, R.P., Progress in Low Temperature Physics, vol. 1, Gorter, C.J., Ed., Amsterdam: North-Holland, 1955, p. 17.

  29. 29

    Schwarz, K.W., Turbulence in Superfluid Helium: Steady Homogeneous Counterflow, Phys. Rev. B, 1978, vol. 18, no. 1, pp. 245–262.

  30. 30

    Nemirovskii, S. and Baltsevich, A., Stochastic Dynamics of a Vortex Loop. Large-Scale Stirring Force, Lect. Notes Phys., 2001, vol. 571, pp. 219–225.

  31. 31

    Nemirovskii, S.K., Pakleza, J., and Poppe, W., Notes et Documents LIMSI (Laboratoire d’Informatique pour la Mecanique et les Sciences de l’Ingenieur), No. 91-14, 1991.

  32. 32

    Wyld, H.W., Formulation of the Theory of Turbulence in an Incompressible Fluid, Ann. Phys., 1961, vol. 14, pp. 143–165.

  33. 33

    Araki, T., Tsubota, M., and Nemirovskii, S.K., Energy Spectrum of Superfluid Turbulence with no Normal-Fluid Component, Phys. Rev. Lett., 2002, vol. 89, no. 14, p. 145301.

  34. 34

    Kivotides, D., Vassilicos, C.J., Samuels, D.C., and Barenghi, C.F., Velocity Spectra of Superfluid Turbulence, EPL (Europhysics Letters), 2002, vol. 57, no. 6, p. 845.

  35. 35

    Kivotides, D., Barenghi, C.F., and Samuels, D.C., Superfluid Vortex Reconnections at Finite Temperature, Europhys. Lett., 2001, vol. 54, p. 774.

  36. 36

    Procaccia, I. and Sreenivasan, K., The State of the Art in Hydrodynamic Turbulence: Past Successes and Future Challenges,Phys. D: Nonlin. Phenom., 2008, vol. 237, nos. 14–17, pp. 2167–2183.

  37. 37

    Nore, C., Abid, M., and Brachet, M.E., Kolmogorov Turbulence in Low-Temperature Superflows, Phys. Rev. Lett., 1997, vol. 78, no. 20, pp. 3896–3899.

  38. 38

    Nore, C., Abid, M., and Brachet, M.E., Decaying Kolmogorov Turbulence in a Model of Superflow, Phys. Fluids, 1997, vol. 9, p. 2644.

  39. 39

    Sasa, N., Kano, T., Machida, M., L’vov, V.S., Rudenko, O., and Tsubota, M., Energy Spectra of Quantum Turbulence: Large-Scale Simulation and Modeling, Phys. Rev. B, 2011, vol. 84, p. 054525.

  40. 40

    Nemirovskii, S.K., Reconnection of Quantized Vortex Filaments and the Kolmogorov Spectrum, Phys. Rev. B, 2014, vol. 90, no. 10, p. 104506.

  41. 41

    Nemirovskii, S.K., Tsubota, M., and Araki, T., Energy Spectrum of the Random Velocity Field Induced by a Gaussian Vortex Tangle in He II, J. Low Temp. Phys., 2002, vol. 126, pp. 1535–1540.

  42. 42

    Kondaurova, L. and Nemirovskii, S.K., Full Biot–Savart Numerical Simulation of Vortices in He II, J. Low Temp. Phys., 2005, vol. 138, pp. 555–560.

  43. 43

    Nemirovskii, S., Energy Spectrum of the 3D Velocity Field, Induced by Vortex Tangle, J. Low Temp. Phys., 2013, vol. 171, nos. 5, 6, pp. 504–510.

  44. 44

    de Waele, A.T. and Aarts, R.G., Route to Vortex Reconnection,Phys. Rev. Lett., 1994, vol. 72, no. 4, pp. 482–485.

  45. 45

    Kuznetsov, E. and Ruban, V., Collapse of Vortex Lines in Hydrodynamics, J. Exp. Theor. Phys., 2000, vol. 91, no. 4, pp. 775–785.

  46. 46

    Kerr, R.M., Swirling, Turbulent Vortex Rings Formed from a Chain Reaction of Reconnection Events, Phys. Fluids, 2013, vol. 25, no. 6, p. 065101.

  47. 47

    Boué, L., Khomenko, D., L’vov, V.S., and Procaccia, I., Analytic Solution of the Approach of Quantum Vortices towards Reconnection, Phys. Rev. Lett., 2013, vol. 111, p. 145302.

  48. 48

    Andryushchenko, V.A., Kondaurova, L.P., and Nemirovskii, S.K., Dynamics of Nonplanar Quantized Vortex Rings before Reconnection at Finite Temperatures, J. Low Temp. Phys., 2017, vol. 187, no. 5, pp. 523–530.

  49. 49

    Fedoryuk, M.V., Metod perevala (The Saddle-Point Method), Moscow: Nauka, 1977.

  50. 50

    Bustamante, M.D. and Kerr, R.M., 3D Euler about a 2D Symmetry Plane, Phys. D: Nonlin. Phen., 2008, vol. 237, nos. 14–17, pp. 1912–1920.

  51. 51

    Kivotides, D., Vassilicos, J.C., Samuels, D.C., and Barenghi, C.F., Kelvin Waves Cascade in Superfluid Turbulence, Phys. Rev. Lett., 2001, vol. 86, no. 14, pp. 3080–3083.

  52. 52

    L’vov, V., Nazarenko, S., and Rudenko, O., Gradual Eddy-Wave Crossover in Superfluid Turbulence, J. Low Temp. Phys., 2008, vol. 153, p. 140.

  53. 53

    L’vov, V.S., Nazarenko, S.V., and Rudenko, O., Bottleneck Crossover between Classical and Quantum Superfluid Turbulence,Phys. Rev. B, 2007, vol. 76, p. 024520.

  54. 54

    Boué, L., Dasgupta, R., Laurie, J., L’vov, V., Nazarenko, S., and Procaccia, I., Phys. Rev. B, 2011, vol. 84, p. 064516.

  55. 55

    Svistunov, B.V., Superfluid Turbulence in the Low-Temperature Limit, Phys. Rev. B, 1995, vol. 52, no. 5, pp. 3647–3653.

  56. 56

    Kozik, E. and Svistunov, B., Kelvin-Wave Cascade and Decay of Superfluid Turbulence, Phys. Rev. Lett., 2004, vol. 92, no. 3, p. 035301.

  57. 57

    Kozik, E. and Svistunov, B., Scale-Separation Scheme for Simulating Superfluid Turbulence: Kelvin-Wave Cascade, Phys. Rev. Lett., 2005, vol. 94, no. 2, p. 025301.

  58. 58

    Kozik, E. and Svistunov, B., Theory of Decay of Superfluid Turbulence in the Low-Temperature Limit, J. Low Temp. Phys., 2009, vol. 156, pp. 215–267.

  59. 59

    Kozik, E. and Svistunov, B., Geometric Symmetries in Superfluid Vortex Dynamics, Phys. Rev. B, 2010, vol. 82, no. 14, p. 140510.

  60. 60

    Laurie, J., L’vov, V.S., Nazarenko, S., and Rudenko, O.,Phys. Rev. B, 2010, vol. 81, no. 10, p. 104526.

  61. 61

    Lebedev, V. and L’vov, V., Symmetries and Interaction Coefficients of Kelvin Waves, J. Low Temp. Phys., 2010, vol. 161, pp. 548–554.

  62. 62

    Nazarenko, S., Private communication, 2013.

  63. 63

    Bradley, D.I., Clubb, D.O., Fisher, S.N., Guénault, A.M., Haley, R.P., Matthews, C.J., Pickett, G.R., Tsepelin, V., and Zaki, K., Phys. Rev. Lett., 2006, vol. 96, no. 3, p. 035301.

  64. 64

    Kondaurova, L. and Nemirovskii, S.K., Numerical Study of Decay of Vortex Tangles in Superfluid Helium at Zero Temperature,Phys. Rev. B, 2012, vol. 86, p. 134506.

  65. 65

    Nemirovskii, S.K., Diffusion of Inhomogeneous Vortex Tangle and Decay of Superfluid Turbulence, Phys. Rev. B, 2010, vol. 81, no. 6, p. 064512.

  66. 66

    Kondaurova, L., Andryuschenko, V., and Nemirovskii, S., Numerical Simulations of Superfluid Turbulence under Periodic Conditions, J. Low Temp. Phys., 2008, vol. 150, pp. 415–419.

Download references


The study of Sections 2.1, 3, and 4 was carried out under the state contract with IT SB RAS (no. 17-117022850027-5). The study of Subsections 2.2 and 3.2 was supported by RFBR/Russian Science Foundation (project no. 18-08-00576).

Author information



Corresponding author

Correspondence to S. K. Nemirovskii.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nemirovskii, S.K. Statistical Signature of Vortex Filaments in Classical Turbulence: Dog or Tail?. J. Engin. Thermophys. 29, 14–25 (2020).

Download citation