Skip to main content

Effect of Mass Transfer and MHD Induced Navier’s Slip Flow Due to a non Linear Stretching Sheet


MHD flow of an electrically conducting Newtonian fluid over a super linear stretching sheet in the presence of suction/injection and Navier slip is studied using modified Adomain decomposition method (MADM) and Padé approximants. Governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations using an appropriate similarity transformation. The transformed equations are solved analytically by the modified ADM and Padé approximation. The modified ADM for solving nonlinear differential equations is purely and solely the traditional Taylor’s series method. Padé approximants are applied to increase the convergence of the given series. The developed analytical technique is verified comprehensively. It is found that Navier’s slip condition can lead to a non-essential growth of the boundary layer thickness and a decrease in the axial and transverse velocities.

This is a preview of subscription content, access via your institution.


c :

constant in the sheet coefficient, s−1

f :

dimensionless stream function

H 0 :

magnetic field, W·m−2

k :

slip constant

Q :

Chandrasekhar number (√Q is called Hartmann number)

R m :

magnetic Reynolds number

u :

axial velocity part along x axis, m/s

v :

transverse velocity part along y axis, m/s

v w(x):

dimensional sheet mass velocity

V c :

mass transfer parameter

x :

horizontal coordinate, m

y :

vertical coordinate, m


Naviers’ slip

η :

similarity variable

μ :

dynamic fluid viscosity, kg·m−1·s−1

ν :

kinematic fluid viscosity, m2·s−1

ρ :

fluid density, kg·m−3

σ :

fluid electrical conductivity

ψ :

physical stream function, m2·s−1



f :


s :


w :

wall condition


from the sheet

f η :

first derivative of f with respect to η

f ηη :

second derivative of f with respect to η

f ηηη :

third derivative of f with respect to η


  1. 1.

    Sakiadis, B.C., Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow, AIChE J., 1961, vol. 7, pp. 26–28.

    Article  Google Scholar 

  2. 2.

    Sakiadis, B.C., Boundary Layer Behavior on Continuous Solid Surfaces: II. The Boundary Layer on a Continuous Flat Surface, AIChE J., 1961, vol. 7, pp. 221–225.

    Article  Google Scholar 

  3. 3.

    Tsou, F.K., Sparrow, E.M., and Goldstein, R.J., Flow and Heat Transfer in the Boundary Layer on Continuous Moving Surfaces, Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 219–235.

    Article  Google Scholar 

  4. 4.

    Crane, L.J., Flow past a Stretching Plate, Z. Angew. Math. Phys., 1970, vol. 21, pp. 645–647.

    Article  Google Scholar 

  5. 5.

    Sutton, G.W. and Sherman, A., Engineering Magnetohydrodynamics, New York: McGraw-Hill, 196

    Google Scholar 

  6. 6.

    Pavlov, K.B., Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by Deformation of a Plane Surface, Magnit. Gidrodin., 1974, vol. 4, pp. 146/1

  7. 7.

    Sarpkaya, T., Flow of Non-Newtonian Fluids in a Magnetic Field, AIChE J., 1961, vol. 7, pp. 324–328.

    Article  Google Scholar 

  8. 8.

    Gupta, P.S. and Gupta, A.S., Heat and Mass Transfer on a Stretching Sheet with Suction and Blowing, Canadian J. Chem. Eng., 1977, vol. 55, pp. 744–746.

    Article  Google Scholar 

  9. 9.

    Chakrabarti, A. and Gupta, A.S., Hydromagnetic Flow and Heat Transfer over a Stretching Sheet, Quart. Appl. Math., 1979, vol. 37, pp. 73–78.

    Article  Google Scholar 

  10. 10.

    Djukic, D.S., Hiemenz Magnetic Flow of Power-Law Fluids, J. Appl. Mech., 1974, vol. 41 pp. 822/823.

    ADS  Article  Google Scholar 

  11. 11.

    Andersson, H.I., Slip Flow past a Stretching Surface, Acta Mech., 2002, vol. 158, pp. 121–125.

    Article  Google Scholar 

  12. 12.

    Siddheshwar, P.G. and Mahabaleshwar, U.S., Effects of Radiation and Heat Source on MHD Flow of a Viscoelastic Liquid and Heat Transfer over a Stretching Sheet, Int. J. Nonlin. Mech., 2005, vol. 40, pp. 807–820.

    Article  Google Scholar 

  13. 13.

    Mahabaleshwar, U.S., Effect of Temperature and Gravity Modulations on the Onset of Magneto-Convection in Weak Electrically Conducting Liquids with Internal Angular Momentum, Int. J. Eng. Sci., 2008, vol. 45, pp. 525–540.

    Article  Google Scholar 

  14. 14.

    Yoshimura, A. and Prudhomme, R.K., Wall Slip Corrections for Couette and Parallel Disc Viscometers, J. Rheology, 1988, vol. 32, pp. 53–67.

    ADS  Article  Google Scholar 

  15. 15.

    Navier, C.L.M., Sur les Lois du Mouvement des Fluids, Comptes Rendus des Seances de LAcademie des Sciences, 1827, vol. 6, pp. 389–440.

    Google Scholar 

  16. 16.

    Mastroberardin, A. and Mahabaleshwar, U.S., Mixed Convection in Viscoelastic Flow Due to a Stretching Sheet in a Porous Medium, J. Porous Media, 2013, vol. 16, pp. 483–500.

    Article  Google Scholar 

  17. 17.

    Mahabaleshwar, U.S., Linear Stretching Sheet Problem with Suction in Porous Medium, Open J. Heat Mass Moment. Trans fer, 2013, vol. 1, pp. 13–18.

    Article  Google Scholar 

  18. 18.

    Mahabaleshwar, U.S., Vinay Kumar, P.N., and Sheremet, M., Magnetohydrodynamics Flow of a Nanofluid Driven by a Stretching/Shrinking Sheet with Suction, SpringerPlus, 2016, vol. 5, p. 1901.

    Article  Google Scholar 

  19. 19.

    Mahabaleshwar, U.S., Sarris, I.E., Hill, A.A., Lorenzini, G., and Pop, I., A MHD Couple Stress Fluid Due to a Perforated Sheet Undergoing Linear Stretching with Heat Transfer, Int. J. Heat Mass Transfer, 2017, vol. 105, pp. 157–167.

    Article  Google Scholar 

  20. 20.

    Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Baleanu, D., and Lorenzini, G., An Exact Analytical Solution of the Unsteady Magnetohydrodynamics Nonlinear Dynamics of Laminar Boundary Layer Due to an Impulsively Linear Stretching Sheet, Continuum Mech. Thermodyn., 2017, vol. 29, iss. 2, pp. 559–567.

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Chaim, T.C., Hydromagnetic Flow over a Surface Stretching with a Power-Law Velocity, Int. J. Eng. Sci., 1995, vol. 33, pp. 429–435.

    Article  Google Scholar 

  22. 22.

    Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Boston, MA: Kluwer, 1994.

    Book  Google Scholar 

  23. 23.

    Boyd, J., Padé Approximant Algorithm for Solving Nonlinear Ordinary Differential Equation Boundary Value Problems on an Unbounded Domain, Comput. Phys., 1997, vol. 11, pp. 299–303.

    ADS  Article  Google Scholar 

  24. 24.

    Kechil, S.A. and Hashim, I., Non-Perturbative Solution of Free-Convective Boundary-Layer Equation by Adomian Decomposition Method, Phys. Lett. A., 2007, vol. 363, pp. 110–114.

    ADS  Article  Google Scholar 

  25. 25.

    Hayat, T., Hussain, Q., and Javed, T., The Modified Decomposition Method and Padé Approximants for the MHD Flow over a Non-Linear Stretching Sheet, Nonlin. An. Real World Appl., 2009, vol. 10, pp. 966–973.

    Article  Google Scholar 

  26. 26.

    Rashidi, M.M., The Modified Differential Transform Method for Solving MHD Boundary Layer Equations, Comp. Phys. Commun., 2009, vol. 180, pp. 2210–2217.

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to U. S. Mahabaleshwar, K. R. Nagaraju, M. A. Sheremet, P. N. Vinay Kumar or G. Lorenzini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahabaleshwar, U.S., Nagaraju, K.R., Sheremet, M.A. et al. Effect of Mass Transfer and MHD Induced Navier’s Slip Flow Due to a non Linear Stretching Sheet. J. Engin. Thermophys. 28, 578–590 (2019).

Download citation