Skip to main content

A Practical Approach for Thermal Stress of Functionally Graded Annular Fin

Abstract

A practical approach is implemented for thermal stresses in an axisymmetric thin annular fin, made of functionally graded material. All material properties of the annular fin are assumed to be graded along the fin radius as a power-law function. A linear differential equation is derived to be the governing equation. Analytical solution of such equations except for simple grading functions is difficult or maybe not possible to implement for each parameter, so the numerical approach becomes inevitable. The novelty of the present study is to introduce the effects of mechanical and thermal properties on the thermal stress distribution of functionally graded annular fin with the help of a complementary function method (CFM). The complementary functions method will be incorporated into the analysis to convert the problem to an initial value problem, which can be easily solved by, for instance, Runge−Kutta methods with great accuracy. The results are validated for isotropic and homogeneous annular fin.

This is a preview of subscription content, access via your institution.

Abbreviations

a, b :

inner and outer radius of the fin

E 0 :

Young modulus of material of the fin at r = a

E(r):

Young modulus of material at any point of the fin

h :

heat transfer coefficient

k 0 :

thermal conductivity of material of the fin, r = a

k(r):

thermal conductivity of material at any point of the fin

N :

dimensionless parameter, N2 = 2ha2/(δ.k)0)

r :

radial coordinate

R :

dimensionless outer radius, R = b/a

S r, S ϕ :

dimensionless radial and tangential stress, Sr = σr/E0, Sϕ = σϕ/E0

T :

temperature of the fin

T b :

base temperature of the fin

T :

ambient temperature

u :

radial displacement

ū :

dimensionless radial displacement, ū = u/a

α 0 :

linear thermal expansion coefficient of material of the fin at r = a

α(r):

linear thermal expansion coefficient of material at any point of the fin

β :

inhomogeneity parameters of Young modulus

γ :

inhomogeneity parameters of thermal conductivity

δ :

thickness of the fin

ε r, ε ϕ :

radial and tangential strain

θ :

dimensionless temperature, θ = (T - T)/(Tb - T)

λ :

inhomogeneity parameters of linear thermal expansion coefficient

ν :

Poisson’s ratio of material of the fin

ξ :

dimensionless radius, ξ = r/a

σ r, σ ϕ :

radial and tangential stress

ϕ :

tangential coordinate

χ:

dimensionless linear thermal expansion coefficient, χ = α0 (Tb) - T)

References

  1. 1.

    Biswas, G., Mitra, N.K., and Fiebig, M., Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators, Int. J. Heat Mass Transfer, 1994, vol. 37, no. 2, pp. 283–291.

    ADS  MATH  Article  Google Scholar 

  2. 2.

    Kraus, A.D., Aziz, A., and Welty, J.R., Extended Surface Heat Transfer, New York: Wiley, 2001.

    Google Scholar 

  3. 3.

    Incropera, F., DeWitt, D.P., Bergman, T.L., and Lavine, A.S., Fundamentals of Heat and Mass Transfer, New York: Wiley, 2007.

    Google Scholar 

  4. 4.

    Aziz, A., Periodic Heat Transfer in Annular Fins, Trans. ASME J. Heat Transfer, 1975, vol. 97, no. 2, pp. 302/303.

    Google Scholar 

  5. 5.

    Ullman, A. and Kalman, H., Efficiency and Optimized Dimensions of Annular Fins of Different Cross-Section Shapes, Int. J. Heat Mass Transfer, 1989, vol. 32, no. 6, pp. 1105–1110.

    Article  Google Scholar 

  6. 6.

    Kundu, B. and Das, P.K., Performance Analysis and Optimization of Annular Fin with a Step Change in Thickness, ASME J. Heat Transfer, 2001, vol. 123, no. 3, pp. 601–604

    Article  Google Scholar 

  7. 7.

    Mokheimer, E.M.A., Performance of Annular Fins with Different Profiles Subject to Variable Heat Transfer Coefficient, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 17, pp. 3631–3642.

    MATH  Article  Google Scholar 

  8. 8.

    Arslanturk, C., Performance Analysis and Optimization of a Thermally Non-Symmetric Annular Fin, Int. Commun. Heat Mass Transfer, 2004, vol. 31, no. 8, pp. 1143–1153.

    Article  Google Scholar 

  9. 9.

    Kang, H.S. and Look, D.C., Optimization of a Thermally Asymmetric Convective and Radiating Annular Fin, Heat Transf. Eng., 2007, vol. 28, no. 4, pp. 310–320.

    ADS  Article  Google Scholar 

  10. 10.

    Kang, H.S. and Look, D.C., Optimization of a Trapezoidal Profile Annular Fin, Heat Transf. Eng., 2009, vol. 30, no. 5, pp. 359–367.

    ADS  Article  Google Scholar 

  11. 11.

    Arslanturk, C., Correlation Equations for Optimum Design of Annular Fins with Temperature-Dependent Thermal Conductivity, Heat Mass Transfer, 2009, vol. 45, no. 4, pp. 519–525.

    ADS  Article  Google Scholar 

  12. 12.

    Qian, J., Heat Transfer Analysis of Uniform Annular Fin on Regular Perturbation Method, Proc. Second Int. Conf. on Mechanic Automation and Control Eng., 2011.

    Google Scholar 

  13. 13.

    Ganji, D.D., Ganji, Z.Z., and Ganji, H.D., Determination of Temperature Distribution for Annular Fins with Temperature Dependent Thermal Conductivity by HPM, Thermal Sci., 2011, vol. 15, pp. 111–115.

    Article  Google Scholar 

  14. 14.

    Peng, H.S. and Chen, C.L., Hybrid Differential Transformation and Finite Difference Method to Annular Fin with Temperature-Dependent Thermal Conductivity, Int J. Heat Mass Transfer, 2011, vol. 54, pp. 2427–2433.

    MATH  Article  Google Scholar 

  15. 15.

    Roy, R. and Ghosal, S., Homotopy Perturbation Method for the Analysis of Heat Transfer in an Annular Fin with Temperature-Dependent Thermal Conductivity, J. Heat Transfer, 2016, vol. 139, no. 2, pp. 1223–1231.

    Google Scholar 

  16. 16.

    Darvishi, M.T., Khani, F., and Aziz, A., Numerical Investigation for a Hyperbolic Annular Fin with Temperature Dependent Thermal Conductivity, Propul. Power Res., 2016, vol. 5, no. 1, pp. 55–62.

    Article  Google Scholar 

  17. 17.

    Wu, S.S., Analysis of Transient Thermal Stresses in an Annular Fin, J. Therm. Stress., 1997, vol. 20, pp. 591–615.

    Article  Google Scholar 

  18. 18.

    Yu, L.T. and Chen, C.K., Application of the Hybrid Method to the Transient Thermal Stresses Response in Isotropic Annular Fins, Trans. ASME J. Appl. Mech., 1999, vol. 66, pp. 340–346.

    ADS  Article  Google Scholar 

  19. 19.

    Yang, Y.C. and Chu, S.S., Transient Coupled Thermoelastic Analysis of an Annular Fin, Int. Comm. Heat Mass Transfer, 2001, vol. 28, no. 8, pp. 1103–1114.

    Article  Google Scholar 

  20. 20.

    Chiu, C.H. and Chen, C.K., Thermal Stresses in Annular Fins with Temperature Dependent Conductivity under Periodic Boundary Condition, J. Therm. Stress., 2002, vol. 25, no. 5, pp. 475–492.

    Article  Google Scholar 

  21. 21.

    Lee, H.L., Yang, Y.C., and Chu, S.S., Transient Thermoplastic Analysis of an Annular Fin with Coupling Effect and Variable Heat Transfer Coefficient, J. Therm. Stress., 2002, vol. 25, no. 12, pp. 1105–1120.

    Article  Google Scholar 

  22. 22.

    Chiu, C.H. and Chen, C.K., Application of the Decomposition Method to Thermal Stresses in Isotropic Circular Fins with Temperature-Dependent Thermal Conductivity, Acta Mech., 2002, vol. 157, nos. 1–4, pp. 147–158.

    MATH  Article  Google Scholar 

  23. 23.

    Yu, L.T. and Chen, C.K., Application of Taylor Transformation to the Thermal Stresses in Isotropic Annular Fins, J. Therm. Stress., 2007, vol. 21, no. 8, pp. 781–809.

    Article  Google Scholar 

  24. 24.

    Wang, C.C., Liao, W.J., and Yang, Y.C., Hybrid Spline Difference Method for Heat Transfer and Thermal Stresses in Annular Fins, Numer. Heat Transfer, Part B: Fundamentals, 2013, vol. 64, no. 1, pp. 71–88.

    ADS  Article  Google Scholar 

  25. 25.

    Mallick, A. and Das, R., Application of Simplex Search Method for Predicting Unknown Parameters in an Annular Fin Subjected to Thermal Stresses, J. Therm. Stress., 2014, vol. 37, no. 2, pp. 236–251.

    Article  Google Scholar 

  26. 26.

    Bas, H. and Keles, I., Novel Approach to Transient Thermal Stress in an Annular Fin, J. Thermophys. Heat Transfer, 2014, vol. 29, no. 4, pp. 705–710.

    Article  Google Scholar 

  27. 27.

    Mallick, A., Ghosal, S., Sarkar, P.K., and Ranjan, R., Homotopy Perturbation Method for Thermal Stresses in an Annular Fin with Variable Thermal Conductivity, J. Therm. Stress., 2015, vol. 38, no. 1, pp. 110–132.

    Article  Google Scholar 

  28. 28.

    Mallick, A., Ranjan, R., and Das, D., Application of Homotopy Perturbation Method and Inverse Prediction of Thermal Parameters for an Annular Fin Subjected to Thermal Load, J. Therm. Stress., 2016, vol. 39, no. 3, pp. 298–313.

    Article  Google Scholar 

  29. 29.

    Koizumi, M., FGM Activities in Japan, Composites, Part B, 1997, vol. 28B, pp. 1–4.

    Article  Google Scholar 

  30. 30.

    Aziz, A. and Rahman, M.M., Thermal Performance of a Functionally Graded Radial Fin, Int. J. Thermophys., 2009, vol. 30, pp. 1637–1648.

    ADS  Article  Google Scholar 

  31. 31.

    Khan, W.A. and Aziz, A., Transient Heat Transfer in a Functionally Graded Convecting Longitudinal Fin, Heat Mass Transfer, 2012, vol. 48, no. 10, pp. 1745–1753.

    ADS  Article  Google Scholar 

  32. 32.

    Lee, H.L., Chang, W.J., Chen, W.L., and Yang, Y.C., Inverse Heat Transfer Analysis of a Functionally Graded Fin to Estimate Time-Dependent Base Heat Flux and Temperature Distributions, Energy Convers. Manag., 2012, vol. 57, pp. 1–7.

    Article  Google Scholar 

  33. 33.

    Aziz, A., Torabi, M., and Zhang, K., Convective, Radiative Radial Fins with Convective Base Heating and Convective, Radiative Tip Cooling: Homogeneous and Functionally Graded nally Graded Materials, Energy Convers. Manag., 2013, vol. 74, pp. 366–376.

    Article  Google Scholar 

  34. 34.

    Gaba, V.K., Tiwari, A.K., and Bhowmick, S., Thermal Performance of Functionally Graded Parabolic Annular Fins Having Constant Weight, J. Mech. Sci. Technol., 2014, vol. 28, no. 10, pp. 4309–4318.

    Article  Google Scholar 

  35. 35.

    Gaba, V.K., Tiwari, A.K., and Bhowmick, S., A Parametric Study of Functionally Graded Rotating Annular Fin, Procedia Eng., 2015, vol. 127, pp. 126–132.

    Article  Google Scholar 

  36. 36.

    Gaba, V.K., Tiwari, A.K, and Bhowmick, S., Performance of Functionally Graded Exponential Annular Fins of Constant Weight, InTech, 2016, Ch. 3.

    Book  Google Scholar 

  37. 37.

    Haghighi, M.R.G., Estimation of Heat Flux in Variable Thickness Functionally Graded Annular Fin, Iranian J. Sci. Technol., Trans. Mech. Eng., 2016, vol. 40, no. 3, pp. 203–214.

    Article  Google Scholar 

  38. 38.

    Hassanzadeh, R. and Pekel, H., Heat Transfer Enhancement in Annular Fins Using Functionally Graded Material, Heat Transfer-Asian Res., 2013, vol. 42, no. 7, pp. 603–617.

    Article  Google Scholar 

  39. 39.

    Hassanzadeh, R. and Pekel, H., Assessment of Thermal Performance of the Functionally Graded Materials in Annular Fins, J. Eng. Thermophys., 2016, vol. 25, no. 3, pp. 377–388.

    Article  Google Scholar 

  40. 40.

    Tutuncu, N. and Temel, B., An Efficient Unified Method for Thermoelastic Analysis of Functionally Graded Rotating Disks of Variable Thickness, Mech. Adv. Mat. Struct., 2013, vol. 20, pp. 38–46.

    Article  Google Scholar 

  41. 41.

    Aktas, Z., Numerical Solutions of Two-Point Boundary Value Problems, Metu, Depart. of Compt. Eng., 1972.

    Google Scholar 

  42. 42.

    Agarwal, R.P., On the Method of Complementary Functions for Nonlinear Boundary-Value Problems, J. Optim. Theory Appl., 1982, vol. 36, no. 1, pp. 139–144.

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Roberts, S.M. and Shipman, J.S., Fundamental Matrix and Two-Point Boundary-Value Problems, J. Optim. Theory Appl., 1979, vol. 28, no. 1, pp. 77–88.

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, New York: McGraw-Hill, 1970.

    MATH  Google Scholar 

  45. 45.

    Crandall, S.H., Dahl, N.C., and Lardner, T.J., An Introduction to the Mechanics of Solids, New York: McGraw-Hill, 1978.

    Google Scholar 

  46. 46.

    Jacob, M., Heat Transfer, New York: Wiley, 1949.

    Google Scholar 

  47. 47.

    Arpaci, V.S., Conduction Heat Transfer, New York: Addison-Wesley, 1966.

    MATH  Google Scholar 

  48. 48.

    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, New York: Oxford University Press, 1959.

    MATH  Google Scholar 

  49. 49.

    Zimmerman, R.W. and Lutz, M.P., Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder, J. Therm. Stress., 1999, vol. 22, no. 2, pp. 177–188.

    Article  Google Scholar 

  50. 50.

    Tutuncu, N. and Temel, B., A Novel Approach to Stress Analysis of Pressurized FGM Cylinders, Disks and Spheres, Compos. Struct., 2009, vol. 91, no. 3, pp. 385–390.

    Article  Google Scholar 

  51. 51.

    Tutuncu, N. and Temel, B., An Efficient Unified Method for Thermoelastic Analysis of Functionally Graded Rotating Disks of Variable Thickness, Mech. Adv. Mat. Struct., 2013, vol. 30, no. 1, pp. 38–46.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Celebi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, A., Celebi, K. & Yarımpabuç, D. A Practical Approach for Thermal Stress of Functionally Graded Annular Fin. J. Engin. Thermophys. 28, 556–568 (2019). https://doi.org/10.1134/S1810232819040118

Download citation