Skip to main content

Phase Equilibria and Mutual Diffusion in Liquid Lithium-Sodium Alloys


The shape of the liquid-liquid coexistence line in the phase diagram of a lithium-sodium system is determined using the gamma-ray attenuation technique. The measured coordinates of the critical point of the coexistence curve (critical temperature TC = 576.8 ± 1.0 K; critical composition XC= 35.9 ± 0.4 at. % Na) are in good agreement with the data in the literature. The critical exponent β for the coexistence curve is 0.34 ± 0.004 in the range 1 · 10−3 < (TC—T)/TC < 5 · 10−2. Mutual diffusion in a Li-=Na melt of near-critical composition is studied at temperatures of 583 to 998 K using the same technique. The behaviour of the interdiffusion coefficient is found not to obey the Arrhenius law at temperatures below 700 K. Darken’s relation is used to estimate the temperature dependence of the long-wave limit SCC(0) of the Bhatia-Thornton concentration-concentration correlation function.

This is a preview of subscription content, access via your institution.


  1. 1.

    Zhang, S., Shin, D., and Liu, Z.K., Thermodynamic Modeling of the Ca-Li-Na System, CALPHAD: Comp. Coupl. Phase Diagrams Thermochem., 2003, vol. 27, pp. 235–241.

    Article  Google Scholar 

  2. 2.

    Feitsma, P.D., Hallers, J.J., Werff, F.V.D., and van der Lugt, W., Electrical Resistivities and Phase Separation of Liquid Lithium-Sodium Alloys, Physica B+C (Amsterdam), 1975, vol. 79, pp. 35–52.

    ADS  Article  Google Scholar 

  3. 3.

    Jost, J., Heydt, D., Spehr, J., and Ruppersberg, H., The Density and Heat Capacity of Liquid Li/Na Alloys, J. Phys.: Cond. Matter, 1994, vol. 6, pp. 321–326.

    ADS  Google Scholar 

  4. 4.

    Le Guillou, J.C. and Zinn-Justin, J., Critical Exponents from Field Theory, Phys. Rev. B, 1980, vol. 21, pp. 3976–3998.

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Wu, E.S. and Brumberger, H., Critical Small-Angle X-Ray Scattering of the Liquid Sodium-Lithium System, Phys. Lett. A, 1975, vol. 53, pp. 475–477.

    ADS  Article  Google Scholar 

  6. 6.

    Ruppersberg, H. and Knoll, W, Short Range Order in Liquid Lithium-Sodium Alloys, Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys., 1977, vol. 32, pp. 1374–1382.

    ADS  Article  Google Scholar 

  7. 7.

    Singh, R.N. and Sommer, F., Segregation and Immiscibility in Liquid Binary Alloys, Rep. Prog. Phys., 1997, vol. 60, pp. 57–150.

    ADS  Article  Google Scholar 

  8. 8.

    Canales, M., Gonzalez, D.J., Gonzalez, L.E., and Padró, J.A., Static Structure and Dynamics of the Liquid Li-Na and Li-Mg Alloys, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, pp. 4747–4757.

    Article  Google Scholar 

  9. 9.

    Khairulin, R.A. and Stankus, S.V., The Concentration Dependences of Molar Volume, Thermal Expansion Coefficient, and Interdiffusion Coefficient for Liquid Lead-Magnesium System, 2008, J. Nuc. Mat., vol. 377, pp. 501–505.

    ADS  Article  Google Scholar 

  10. 10.

    Khairulin, R.A., Stankus, S.V., and Sorokin, A.L., Determination of the Two-Melt Phase Boundary and Study of the Binary Diffusion in Liquid Bi-Ga System with a Miscibility Gap, J. Non-Cryst. Solids, 2002, vol. 297, pp. 120–130.

    ADS  Article  Google Scholar 

  11. 11.

    Khairulin, R.A., Abdullaev, R.N., Stankus, S.V., Agazhanov, A.S., and Savchenko, I.V., Volumetric Properties of Lithium-Lead Melts, Int. J. Thermophys., 2017, vol. 38, article no. 23.

  12. 12.

    Khairulin, R.A., Stankus, S.V., and Abdullaev, R.N., Density, Thermal Expansion and Binary Diffusion Coefficients of Sodium-Lead Melts, High Temp. High Press., 2013, vol. 42, pp. 493–507.

    Google Scholar 

  13. 13.

    de Groot, S.R. and Mazur, P., Nonequilibrium Thermodynamics, Amsterdam: North-Holland, 1962.

    MATH  Google Scholar 

  14. 14.

    Jost, W., Diffusion in Solids, Liquids, Gases, New York: Academic Press, 1960.

    Google Scholar 

  15. 15.

    Shpil’rain, E.E., Yakimovich, K.A., Totskii, E.E., Timrot, D.L., and Fomin, V.A., Teplofizicheskie svoistva shchelochnykh metallov (Thermophysical Properties of Alkaline Metals), Moscow: Izd. Standartov, 1970.

    Google Scholar 

  16. 16.

    Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.

    Google Scholar 

  17. 17.

    Khairulin, R.A., Stankus, S.V., and Bezverkhy, P.P., Study of the Binary Diffusion in Liquid Sn-Pb and Al-Ge Alloys by Measurement of the Melt Concentration, J. Alloys Compd., 2000, vol. 312, pp. 211–218.

    Article  Google Scholar 

  18. 18.

    Horbach, J., Das, S.K., Griesche, A., Macht, M.P., Frohberg, G., and Meyer, A., Self-Diffusion and Interdiffusion in Al80Ni20 Melts: Simulation and Experiment, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, article no. 174304.

  19. 19.

    Zhang, B., Griesche, A., and Meyer, A., Diffusion in Al-Cu Melts Studied by Time-Resolved X-Ray Radiography, Phys. Rev. Lett., 2010, vol. 104, article no. 035902.

Download references


This study of mutual diffusion in Li-Na melts was carried out under state contract with IT SB RAS (AAAA-A17–117022850029–9). The study of phase equilibria was financially supported by the Russian Foundation for Basic Research (project no. 18–08–00389).

Author information



Corresponding author

Correspondence to R. A. Khairulin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khairulin, R.A., Abdullaev, R.N. & Stankus, S.V. Phase Equilibria and Mutual Diffusion in Liquid Lithium-Sodium Alloys. J. Engin. Thermophys. 28, 472–483 (2019).

Download citation