Skip to main content

Crystallization of Salt Solutions on Surface of Droplet and Layer

Abstract

The evaporation and crystallization of a droplet and a thin layer of aqueous solutions of LiBr and LiCl salts on a heated wall with a temperature Tw = 86°C were studied experimentally. Crystallization curves were obtained for a wide range of initial salt concentrations. For the first time it was shown that for different C01 values the crystallization rates Jcr were different; the Jcr curve was nonlinear. With C01 decreasing, the supersaturation at the onset of crystallization increased, because of different induction times with respect to the generation of the first active crystallization center. It is known for relatively large crystals that heat transfer influences the rate of crystallization. Processing of the experimental data with due account of the basic thermophysical parameters shows that supersaturation also affects the crystal growth. The crystallization rate in a thin layer is significantly higher than in a droplet. It was found that description of crystallization in a droplet should take into account strong anisotropy of the crystallization.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Steiger, M. and Asmussen S., Crystallization of Sodium Sulfate Phases in Porous Materials: The Phase Diagram Na2SO4–H2O and the Generation of Stress, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4291–4306.

    ADS  Article  Google Scholar 

  2. 2.

    Saidov, T.A., Pel, L., and van der Heijden, G.H.A., Crystallization of Sodium Sulfate in Porous Media by Drying at a Constant Temperature, Int. J. Heat Mass Transfer, 2015, vol. 83, pp. 621–628.

    Article  Google Scholar 

  3. 3.

    Balboni, E., Espinosa-Marzal, R.M. Doehne, E., and Scherer, G.W. Can Drying and Re-Wetting of Magnesium Sulfate Salt Lead to Damage of Stone?, Environ. Earth Sci., 2011, vol. 63, pp. 1463–1473.

    Article  Google Scholar 

  4. 4.

    Lindsrom, N., Talreja, T., Linnow, K., Stahlbuhk, A., and Steiger, M., Crystallization Behavior of Na2SO4–MgSO4 Salt Mixtures in Sandstone and Comparison to Single Salt Behavior, Appl. Geochem., 2016, vol. 69, pp. 50–79.

    Article  Google Scholar 

  5. 5.

    Schiro, M., Ruiz-Agudo, E., and Rodriguez-Navarro, C., Damage Mechanism of Porous Materials due to In-Pore Salt Crystallization, Phys. Rev. Lett., 2012, vol. 109, 265503 (5).

    ADS  Article  Google Scholar 

  6. 6.

    Chakraborty, S., Rosen, M.A. and MacDonald, B.D, Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Therm. Eng., 2017, vol. 125, pp. 104–110.

    Article  Google Scholar 

  7. 7.

    Misyura, S.Y. The Effect of Weber Number, Droplet Sizes and Wall Roughness on Crisis of Droplet Boiling, Exp. Therm. Fluid Sci., 2017, vol. 84, pp. 190–198.

    Article  Google Scholar 

  8. 8.

    Dmitrienko, M.A. Nyashina, G.S. and Strizhak, P.A. Environmental Indicators of the Combustion of Prospective Coal Water Slurry Containing Petrochemicals, J. Hazardous Mat., 2017, vol. 338, pp. 148–159.

    Article  Google Scholar 

  9. 9.

    Yang, Z., et al., Recent Advances in Co-Thermochemical Conversion of Biomass with Fossil Fuels Focusing on Synergistic Effects, Renew. Sustain. Energy Rev., 2019, vol. 103, pp. 384–398.

    Article  Google Scholar 

  10. 10.

    Pavlenko, A.N. et al., Dynamics of Transient Processes at Liquid Boiling-Up in the Conditions of Free Convection and Forced Flow in a Channel under Nonstationary Heat Release, J. Eng. Therm., 2014, vol. 23, pp. 173–193.

    Article  Google Scholar 

  11. 11.

    Zheng, Z., Song, S., and Wang, Y., Sol-Gel-Processed Amorphous Lithium Ion Electrolyte Thin Films: Structural Evolution, Theoretical Considerations, and Ion Transport Processes, Solid State Ionics, 2016, vol. 287, pp. 60–70.

    Article  Google Scholar 

  12. 12.

    Nakoryakov, V.E. and Grigoryeva, N.I. Neizotermicheskaya absorbtsiya v termotransformatorakh (Nonisothermal Absorption in Thermotransformers), Novosibirsk: Nauka, 2010.

    Google Scholar 

  13. 13.

    Rozentsvaig, A. and Strashinskii, Ch., Hydrodynamic Aspects of Boiling-up of a Disperse Phase in a Homogeneous Turbulent Flow of an Emulsion, High Temp., 2011, vol. 49, pp. 143–146.

    Article  Google Scholar 

  14. 14.

    Misyura, S.Y. and Nakoryakov, V.E. Nonstationary Combustion of Methane with Gas Hydrate Dissociation, Energy Fuels, 2013, vol. 27, pp. 7089–7097.

    Article  Google Scholar 

  15. 15.

    Wu, F.H. Padilla, R.E. Dunn-Rankin, D., Chen, G.B. and Chao, Y.C. Thermal Structure of Methane Hydrate Fueled Flames, Proc. Combust. Inst., 2017, vol. 36, pp. 4391–4398.

    Article  Google Scholar 

  16. 16.

    Misyura, S.Y. Efficiency of Methane Hydrate Combustion for Different Types of Oxidizer Flow, Energy, 2016, vol. 103, pp. 430–439.

    Article  Google Scholar 

  17. 17.

    Bar-Kohany, T. and Sirignano, W.A. Transient Combustion of Methane-Hydrate Sphere, Combust. Flame, 2016, vol. 163, pp. 284–330.

    Article  Google Scholar 

  18. 18.

    Misyura, S.Y. and Donskoy, I.G. Dissociation of Natural and Artificial Gas Hydrate, Chem. Eng. Sci., 2016, vol. 148, pp. 65–77.

    Article  Google Scholar 

  19. 19.

    David, S., Sefiane, K., and Tadrist, L., Experimental Investigation of the Effect of Thermal Properties of the Substrate in the Wetting and Evaporation of Sessile Drops, Colloid Surf., 2007, vol. 298, pp. 108–114.

    Article  Google Scholar 

  20. 20.

    Dunn, G.J. et al., The Strong Influence of Substrate Conductivity on Droplet Evaporation, J. Fluid Mech., 2009, vol. 623, p. 329.

    ADS  Article  MATH  Google Scholar 

  21. 21.

    Carrier, O., Shahidzadeh-Bonn, N., Zargar, R., Aytouna, M., Habibi, M., Eggers, J., and Bonn, D., Evaporation of Water: Evaporation Rate and Collective Effects, J. Fluid Mech., 2016, vol. 798, pp. 774–786.

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Kelly-Zion, P.L. Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.

    Article  Google Scholar 

  23. 23.

    Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.

    Article  Google Scholar 

  24. 24.

    Strizhak, P.A. et al., The Role of Convection in Gas and Liquid Phases at Droplet Evaporation, Int. J. Therm. Sci., 2018, vol. 134, pp. 421–439.

    Article  Google Scholar 

  25. 25.

    Volkov, R.S. et al., The Influence of Key Factors on the Heat and Mass Transfer of a Sessile Droplet, Exp. Therm. Fluid Sci., 2018, vol. 99, pp. 59–70.

    Article  Google Scholar 

  26. 26.

    Hu, H. and Larson, R.G. Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.

    Article  Google Scholar 

  27. 27.

    Hu, H. and Larson, R.G. Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.

    Article  Google Scholar 

  28. 28.

    Yagodnitsyna, A., Bilsky, A., et al., Velocity Field Measurements in an Evaporating Sessile Droplet by Means of Micro-PIV Technique, MATEC Web Conf., vol. 84, 2016, p. 00042.

    Article  Google Scholar 

  29. 29.

    Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J.G.M., Zhang, X., and Lohse, D., Evaporating Pure, Binary and Ternary Droplets: Thermal Effect and Axial Symmetry Breaking, J. Fluid Mech., 2017, vol. 823, pp. 470–497.

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Machrafi, H., Rednikov, A., Colinet, P., and Dauby, P., Benard Instabilities in a Binary-Liquid Layer Evaporating into an Inert Gas, J. Colloid Interface Sci., 2010, vol. 349, pp. 331–353.

    ADS  Article  Google Scholar 

  31. 31.

    Kuznetsov, G.V. Feoktistov, D.V. and Orlova, E.G. Regimes of Spreading of a Water Droplet over Substrates with Varying Wettability, J. Eng. Phys. Thermophys., 2016, vol. 89, pp. 317–322.

    Article  Google Scholar 

  32. 32.

    Wang, Y. and Wang, Z.-G., Droplets Wetting and Evaporating on Ethanol-Philic Micro-Structured Surfaces, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 704–708.

    Article  Google Scholar 

  33. 33.

    Gao, M. et al. An Experimental Investigation of Sessile Droplets Evaporation on Hydrophilic and Hydropho-bic Heating Surface with Constant Heat Flux, Int. Comm. Heat Mass Transfer, 2017, vol. 88, pp. 262–268.

    Article  Google Scholar 

  34. 34.

    Schmid, J. et al., Crystallization of Urea from an Evaporative Aqueous Solution Sessile Droplet at Sub-Boiling Temperatures and Surfaces with Different Wettability, Exp. Therm. Fluid Sci., 2018, vol. 9, pp. 80–88.

    Article  Google Scholar 

  35. 35.

    Ivanova, N., Starov, V., Rubio, R., Ritacco, H., Hilal, N., and Johnson, D., Critical Wetting Concentrations of Trisiloxane Surfactants, Colloid Surf. A, 2010, vol. 354, pp. 143–148.

    Article  Google Scholar 

  36. 36.

    Ivanova, N.A. and Starov, V.M. Wetting of Low Free Energy Surfaces by Aqueous Surfactant Solutions, Current Opinion, Colloid Interface Sci., 2011, vol. 16, pp. 285–291.

    Article  Google Scholar 

  37. 37.

    Wagner, R. et al., Silicon-Modified Carbohydrate Surfactants: IV. The Impact of Substructures on the Wetting Behavior of Siloxanyl-Modified Carbohydrate Surfactants on Low-Energy Surfaces, Appl. Organomet. Chem., 1997, vol. 11, pp. 617–632.

    Article  Google Scholar 

  38. 38.

    Semenov, S. et al., Evaporation of Droplets of Surfactant Solutions, Langmuir, 2013, vol. 29, no. 32, pp. 10028–10036.

    Article  Google Scholar 

  39. 39.

    Semenov, S. et al., Simultaneous Spreading and Evaporation: Recent Developments, Adv. Colloid Interface Sci., 2014, vol. 206, pp. 382–398.

    Article  Google Scholar 

  40. 40.

    Maindarkar, S.N. Hoogland, H., and Henson, M.A. Predicting the Combined Effects of Oil and Surfactant Concentrations on the Drop Size Distributions of Homogenized Emulsions, Colloids Surfaces A, 2015, vol. 467, pp. 18–30.

    Article  Google Scholar 

  41. 41.

    Maindarkar, S.N. Bongers, P., and Henson M.A., Predicting the Effects of Surfactant Coverage on Drop Size Distributions of Homogenized Emulsions, Chem. Eng. Sci., 2013, vol. 89, pp. 102–114.

    Article  Google Scholar 

  42. 42.

    Kuznetsov, G.V. Feoktistov, D.V. Orlova, E.G., Batishcheva, K., and Ilenok, S.S. Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surface Sci., 2019, vol. 469, pp. 974–982.

    ADS  Article  Google Scholar 

  43. 43.

    Orlova, E.G. Feoktistov, D.V. Kuznetsov, G.V. and Ponomarev, K.O. Spreading of a Distilled Water Droplet over Polished and Laser-Treated Aluminum Surfaces, European J. Mech., B/Fluids, 2018, vol. 68, pp. 118–127.

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    Misyura, S.Y. Heat Transfer of Aqueous Salt Solutions during Evaporation on a Structured Heated Wall, Int. Comm. Heat Mass Transfer, 2018, vol. 96, pp. 7–11.

    Article  Google Scholar 

  45. 45.

    Misyura, S.Y. The Influence of Convection on Heat Transfer in a Water Layer on a Heated Structured Wall, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 14–21.

    Article  Google Scholar 

  46. 46.

    Misyura, S.Y. Non-Isothermal Evaporation of Salt Solutions on a Microstructured Surface, Nanoscale Microscale Therm. Eng., 2018, vol. 22, no. 3, pp. 213–229.

    ADS  Article  Google Scholar 

  47. 47.

    Misyura, S.Y. Free Solution Convection at Non-Isothermal Evaporation of Aqueous Salt Solution on a Micro-Structure Wall, Nanoscale Microscale Therm. Eng., 2019, vol. 23, pp. 48–66.

    ADS  Article  Google Scholar 

  48. 48.

    Nakoryakov, V.E. Grigoryeva, N.I. and Bartashevich, M.V. Heat and Mass Transfer in the Entrance Region of the Falling Film: Absorption, Desorption, Condensation and Evaporation, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 4485–4490.

    Article  MATH  Google Scholar 

  49. 49.

    Nakoryakov, V.E. Ostapenko, V.V. and Bartashevich, M.V. Heat and Mass Transfer in the Liquid Film on a Vertical Wall in Roll-Wave Regime, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 6514–6518.

    Article  Google Scholar 

  50. 50.

    Ibarra-Bahena, J. et al., Experimental Assessment of a Hydrophobic Membrane-Based Desorber/Condenser with H2O/LiBr Mixture for Absorption Systems, Exp. Therm. Fluid Sci., 2017, vol. 88, pp. 145–159.

    Article  Google Scholar 

  51. 51.

    Camassel, B., Sghaier, N., Prat, M., and Ben, Nasrallah, S., Evaporation in Capillary Tube of Square Cross-Section: Application to Ion Transport, Chem. Eng. Sci., 2005, vol. 60, pp. 815–826.

    Article  Google Scholar 

  52. 52.

    Qu, G., Kwok, J.J. and Diao, Y., Flow-Directed Crystallization for Printed Electronics, Acc. Chem. Res., 2016, vol. 49, pp. 2756–2764.

    Article  Google Scholar 

  53. 53.

    Sudzuki, K., Fudzimori, H., and Khasimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgia, 1987.

    Google Scholar 

  54. 54.

    Kunitskii, Yu.A., Korzhik, V.N. and Borisov, Yu.S., Nekristallicheskie metallicheskie materialy i pokry-tiya v tekhnike (Non-Crystalline Metal Materials and Coatings in Engineering), Kiev: Tekhnika, 1988.

    Google Scholar 

  55. 55.

    Qu, G., Kwok, J.J. and Diao, Y., Flow-Directed Crystallization for Printed Electronics, Acc. Chem. Res., 2016, vol. 49, pp. 2756–2764.

    Article  Google Scholar 

  56. 56.

    Meshalkin, A.B. and Kaplun, A.B. The Complex Investigation of the Phase Equilibria and Melts Characteristics in Borate and Silicate Systems, J. Crystal Growth, 2005, vol. 275, pp. 115–119.

    ADS  Article  Google Scholar 

  57. 57.

    Misyura, S.Y. The Anomalously High Rate of Crystallization, Controlled by Crystal Forms under the Conditions of a Limited Liquid Volume, Cryst. Growth Des., 2018, vol. 18, no. 3, pp. 1327–1338.

    Article  Google Scholar 

  58. 58.

    Shahidzadeh-Bonn, N., Rafai, S., Bonn, D., and Wegdam, G., Salt Crystallization during Evaporation: Impact of Interfacial Properties, Langmuir, 2008, vol. 24, pp. 8599–8605.

    Article  Google Scholar 

  59. 59.

    Linnow, K., Steiger, M., Lemster, C., Clercq, H. De., and Jovanovic, M., In Situ Raman Observation of the Crystallization in NaNO3–Na2SO4–H2O Solution Droplet, Environ Earth Sci., 2013, vol. 69, pp. 1609–1620.

    Article  Google Scholar 

  60. 60.

    Shahidzadeh, N., Schut, M.F.L., Desarnaud, J., Prat, M., and Bonn, D., Salt Stains from Evaporating Droplets, Sci. Rep., 2015, vol. 5, p. 10335.

    ADS  Article  Google Scholar 

  61. 61.

    Nakoryakov, V.E. et. al., Nucleate Boiling in Pure-Water and Salt-Water Droplets, Dokl. Phys., 2014, vol. 59, pp. 441–445.

    ADS  Article  Google Scholar 

  62. 62.

    Nakoryakov, V.E. et. al., Bubble Boiling in Droplets of Water and Lithium Bromide Water Solution, J. Eng. Therm., 2016, vol. 25, pp. 24–31.

    Article  Google Scholar 

  63. 63.

    Semenov, M.E. et al., DSC and Thermal Imaging Studies of Methane Hydrate Formation and Dissociation in Water Emulsions in Crude Oils, J. Therm. An. Calorimetry, 2015, vol. 119, pp. 757–767.

    Article  Google Scholar 

  64. 64.

    Conde, M.R. Properties of Aqueous Solution of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design, Int. J. Therm. Sci., 2004, vol. 43, pp. 367–382.

    Article  Google Scholar 

  65. 65.

    Lower, H., Thermodynamishe und Physikalische Eigenschaften der Wassrigen Lifhum-Bromid Losung, Dissertation, Karlsruhe, 1960.

    Google Scholar 

  66. 66.

    Mullin, J.W. Crystallization, 4th ed., Oxford: Butterworth, 2004.

    Google Scholar 

  67. 67.

    Lyubov, B.Ya., Teoriya kristallizatsii v bol’shikh obemakh (Theory of Crystallization in Large Volumes), Moscow: Nauka, 1975.

    Google Scholar 

  68. 68.

    Kuznetsov, G.V. et al., Evaporation Modes of LiBr, CaCl2, LiCl, NaCl Aqueous Salt Solution Droplets on Aluminum Surface, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 161–168.

    Article  Google Scholar 

  69. 69.

    Misyura, S.Y. Free Convection and Vapor Diffusion of Droplet Aqueous Solutions, Chem. Eng. Res. Des., 2017, vol. 126, pp. 153–160.

    Article  Google Scholar 

  70. 70.

    Misyura, S.Y. Non-Isothermal Evaporation in a Sessile Droplet of Water-Salt Solution, Int. J. Therm. Sci., 2018, vol. 124, pp. 76–84.

    Article  Google Scholar 

  71. 71.

    Qazi, M.J. Liefferink, R.W. Schlegel, S.J., Backus, E.H.G., Bonn, D., and Shahidzadeh, N., Influence of Surfactants on Sodium Chloride Crystallization in Confinement, Langmuir, 2017, vol. 33, pp. 4260–4268.

    Article  Google Scholar 

Download references

Acknowledgments

The study was carried out at Kutateladze Institute of Thermophysics SB RAS and financially supported by the Russian Science Foundation (project no. 15-19-10025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Y. Misyura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Morozov, V.S. Crystallization of Salt Solutions on Surface of Droplet and Layer. J. Engin. Thermophys. 28, 381–391 (2019). https://doi.org/10.1134/S1810232819030081

Download citation