Skip to main content

Numerical Models of the Vertical Turbulent Exchange in Stably Stratified Water Body: I. Mathematical Models

Abstract

Improved second-order mathematical models are developed for description of the processes of vertical turbulent exchange in stably stratified water body. The models are based on algebraic representations of Reynolds stresses and fluxes and the use of a differential transport equation of dispersion of fluctuations of the vertical velocity component. A numerical model of the vertical turbulent exchange under simultaneous stratification in temperature and salinity is developed. In the case of stable stratification defined by only a variation in salinity, role ofWeinstock modification of the relaxation time scale of a scalar field is evaluated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, vol. 1: Mechanics of Turbulence, Cambridge: MIT Press, 1971.

    Google Scholar 

  2. 2.

    Kochergin, V.P., Tsvetova, E.A., and Sukhorukov, V.A., Modeling of the Processes of Vertical Turbulent Diffusion in Ocean, in Numerical Methods for Computation of Ocean Flows, Novosibirsk: Comput. Center, Siberian Branch, USSR Acad. Sci., 1974, pp. 129–152.

    Google Scholar 

  3. 3.

    Kochergin, V.P., Klimok, V.I., and Sukhorukov, V.A., Homogeneous Ocean Layer within the Framework of “Differential” Models, Chisl. Met. Mekh. Sploshnoi Sredy, 1977, vol. 8, no. 5, pp. 105–114.

    Google Scholar 

  4. 4.

    Ignatova, G.Sh. and Kvon, V.I., On the Model of Turbulent Flow with Sliding at the Bottom of Water Flow, Meteorol. Gidrol., 1977, no. 8, pp. 49–56.

    Google Scholar 

  5. 5.

    Marchuk, G.I., Kochergin, V.P., Klimok, V.I., and Sukhorukov, V.A., On the Dynamics of the Ocean Surface Mixed Layer, J. Phys. Oceanogr., 1977, vol. 7, pp. 865–875.

    ADS  Article  Google Scholar 

  6. 6.

    Rodi, W., Turbulence Models and Their Application in Hydraulics. A State of the Art Review, University of Karlsruhe, 1980.

    Google Scholar 

  7. 7.

    Rodi, W., Examples of CalculationMethods for Flow and Mixing in Stratified Fluids, J. Geophys. Res., 1987, vol. 92, no. C5, pp. 5305–5328.

    ADS  Article  Google Scholar 

  8. 8.

    Zilitinkevich, S.S., Resnyanskii, Yu.D., and Chalikov, D.V., Theoretical Modeling of Upper Ocean, Itogi Nauki Tekh., Ser.Mekh. Zhidkosti Gaza,Moscow: VINITI, 1978, vol. 12, pp. 5–51.

    Google Scholar 

  9. 9.

    Lewellen, W.S., Use of InvariantModeling, in Handbook of Turbulence. Fundamentals and Applications, Frost, W. and Moulden, T. (Eds.), New York: Plenum, 1977, pp. 237–280.

    Chapter  Google Scholar 

  10. 10.

    Monin, A.S. and Ozmidov, R.V., Okeanskaya turbulentnost (Ocean Turbulence), Leningrad: Gidrometeoizdat, 1981.

    Google Scholar 

  11. 11.

    Mellor, G.L. and Yamada, T., Development of a Turbulence Closure Model for Geophysical Fluid Problems, Rev. Geophys. Space Phys., 1982, vol. 20, no. 4, pp. 851–875.

    ADS  Article  Google Scholar 

  12. 12.

    Lineikin, P.S. and Maderich, V.S., Teoriya okeanicheskogo termoklina (Theory of Ocean Thermocline), Leningrad: Gidrometeoizdat, 1982.

    Google Scholar 

  13. 13.

    Rodi, W., Turbulence Models for Environmental Problems, in Prediction Methods for Turbulent Flows, Kollmann, W. (Ed.), Washington, D.C.: Hemisphere, 1980, pp. 259–349.

    Google Scholar 

  14. 14.

    Celik, I. and Rodi, W., Simulation of Free-Surface Effects in Turbulent Channel Flows, Phys.-Chem. Hydrodyn., 1984, vol. 5, nos. 3/4, pp. 217–227.

    Google Scholar 

  15. 15.

    Lapidevsky, V.Yu., Model of the Penetration of an UpperUniform Layer into a Stratified Fluid, J. Appl.Mech. Tech. Phys., 1986, vol. 7, no. 2, pp. 196–202.

    ADS  Article  Google Scholar 

  16. 16.

    Vasiliev, O.F. and Dumnov, S.V., Numerical Modeling of Flow in a River Estuary, Proc. Technical Session B. XXII Congress IAHR, Lausanne, 1987, pp. 83–87.

    Google Scholar 

  17. 17.

    Kurbatskii, A.F., Modelirovanie nelokal’nogo perenosa impulsa i tepla (Modeling of Nonlocal Transfer of Momentum and Heat), Novosibirsk: Nauka, 1988.

    Google Scholar 

  18. 18.

    Weinstock, J., A Theory of Turbulence Transport, J. Fluid Mech., 1989, vol. 202, pp. 319–338.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Sukhorukov, V.A. and Dmitriev, N.V., Theory of the Turbulent Drift Friction Layer of the Ocean, J. Phys. Oceanogr., 1990, vol. 20, no. 8, pp. 1137–1149.

    ADS  Article  Google Scholar 

  20. 20.

    Dmitriev, N.V., Matematicheskoe modelirovanie vertikalnogo turbulentnogo obmena v verkhnem sloe okeana (MathematicalModeling of Vertical Turbulent Exchange in the UpperOcean Layer, Chernykh, G.G. (Ed.), Novosibirsk: Comput. Center, SB RAS, 1993.

  21. 21.

    Deleersnijder, E. and Luyten, P., On the Practical Advantages of the Quasi-Equilibrium Version of the Mellor and Yamada Level 2, 5 Turbulence Closure Applied toMarineModeling, Appl.Math. Model., 1994, vol. 18, pp. 281–287.

    Article  MATH  Google Scholar 

  22. 22.

    Druzhinin, O.A., Kazakov, V.I., Matusov, P.A., and Ostrovsky, L.A., The Evolution of a Thermocline Effect by a Turbulent Stream, Nonlin. Process. Geophys., 1995, vol. 2, no. 1, pp. 49–57.

    ADS  Article  Google Scholar 

  23. 23.

    Hanjalic, K. and Musemic, R., Modeling the Dynamics of Double-Diffusive Scalar Fields at Various Stability Conditions, Int. J. Heat Fluid Flow, 1997, vol. 18, no. 4, pp. 360–367.

    Article  Google Scholar 

  24. 24.

    Ilyushin, B.B. and Kurbatskii, A.F., New Models for Calculating Third-Order Moments in the Planetary Boundary Layer, Izv. RAN, Atmospher. Oceanic Phys., 1998, vol. 34, no. 6, pp. 692–700.

    Google Scholar 

  25. 25.

    Zinoviev, A.T. and Yakovenko, S.N., Modeling of Vertical Turbulent Exchange in a Stratified Near-Wall Flow, J. Appl. Mech. Techn. Phys., 1998, vol. 39, no. 6, pp. 868–874.

    ADS  Article  Google Scholar 

  26. 26.

    Kurbatskii, A.F., Vvedenie v modelirovanie turbulentnogo perenosa impulsa i skalyara (Introduction to Modeling of Turbulent Transfer of Momentum and Scalar), Novosibirsk: Geo, 2007.

    Google Scholar 

  27. 27.

    Kantha, L., Modeling Turbulent Mixing in the Global Ocean: Second Moment Closure Models, in Turbulence: Theory, Types and Simulation, ch. 1, Nova Science, 2010, pp. 1–68.

    Google Scholar 

  28. 28.

    Vasiliev, O.F., Voropaeva, O.F., and Kurbatskii, A.F., Turbulent Mixing in Stably Stratified Flows of the Environment: The Current State of the Problem (Review), Izv. Atm. Ocean. Phys., 2011, vol. 47, no. 3, pp. 265–280.

    Article  Google Scholar 

  29. 29.

    Kato, H. and Phillips, O.M., On the Penetration of a Turbulent Layer into Stratified Fluid, J. Fluid Mech., 1969, vol. 37, pt. 4, pp. 643–655.

    ADS  Article  Google Scholar 

  30. 30.

    Phillips, O.M., The Dynamics of the Upper Ocean, Cambridge: Cambridge Univ. Press, 1966.

    MATH  Google Scholar 

  31. 31.

    Ermakova, O.S., Kapustin, I.A., and Papko, V.V., Turbulent-LayerDynamics inHomogeneous and Stratified Fluids, Izv. Atm. Ocean. Phys., 2008, vol. 44, no. 5, pp. 583–593.

    Article  Google Scholar 

  32. 32.

    Vasil’ev, O.F., Ovchinnikova, T.E., and Chernykh, G.G., Mathematical Modeling of Turbulent Layer Penetration in a Stratified Fluid, Dokl. Phys., 2012, vol. 57, no. 4, pp. 166–170.

    ADS  Article  Google Scholar 

  33. 33.

    Vasiliev, O.F., Ovchinnikova, T.E., and Chernykh, G.G., On the Numerical Modeling of the Turbulent Layer Penetration into a Stably Stratified Fluid, Thermophys. Aeromech., 2013, vol. 20, no. 2, pp. 139–149

    ADS  Article  Google Scholar 

  34. 34.

    Vasiliev, O.F., Ovchinnikova, T.E., and Chernykh, G.G., Numerical Models of the Penetration of a Turbulent Layer in Stably Stratified Flow, Mat. Model., 2015, vol. 27, no. 5, pp. 52–64.

    MATH  Google Scholar 

  35. 35.

    Kompaniets, L.A., Yakubailik, T.V., and Gavrilova, L.V., Dynamics of the Penetration of a Mixed Layer of Fluid in Three-Dimensional Calculations, Obraz. Res. Thechnol., 2016, vol. 2, no. 14, pp. 404–409.

    Google Scholar 

  36. 36.

    Vasiliev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Turbulent Mixing Zone in a Stratified Medium, Proc. Int. Seminar on Heat Transfer and Turbulent Buyant Convection, Dubrovnik, Yugoslavia, August 30–September 4, 1976, Washington: Hemisphere, 1976, vol. 2, pp. 123–136.

    Google Scholar 

  37. 37.

    Chernykh, G.G. and Voropaeva, O.F., Numerical Modeling of Momentumless TurbulentWake Dynamics in a LinearlyStratified Medium, Comput. Fluids, 1999, vol. 28, no. 3, pp. 281–306.

    Article  Google Scholar 

  38. 38.

    Bocharov, O.B., Vasil’ev, O.F., and Ovchinnikova, T.E., Approximate Equation of State of Water in the Vicinity of the Maximum-Density Temperature with Allowance for Mineralization, Izv. Atm. Ocean. Phys., 2004, vol. 40, no. 3, pp. 423–425.

    Google Scholar 

  39. 39.

    Chen, C.T. and Millero, F.J., Precise Thermodynamic Properties for Natural Waters Covering Only the Limnologies Range, Limnol. Oceanogr., 1986, vol. 31, no. 3, pp. 657–662.

    ADS  Article  Google Scholar 

  40. 40.

    Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. E. Ovchinnikova.

Additional information

† Deceased.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, O.F., Ovchinnikova, T.E. & Chernykh, G.G. Numerical Models of the Vertical Turbulent Exchange in Stably Stratified Water Body: I. Mathematical Models. J. Engin. Thermophys. 27, 522–530 (2018). https://doi.org/10.1134/S1810232818040148

Download citation