Skip to main content

Drag and Lift Forces Acting on a Sphere in Shear Flow of Power-Law Fluid


Laminar flow of a power-law fluid over a sphere is considered for unbounded shear flow. The Navier–Stokes equations with power-law viscosity are solved numerically using an in-house developed CFD package. Vorticities structures downstream of particle are suppressed for powerlaw fluid. The shear rate influence on drag force is negligible for power index close to unit, and the drag force appreciably decreases with falling power index. For small Reynolds numbers, the lift force coefficient monotonically decreases against the power index and exhibits an opposite behavior for moderate values of Reynolds numbers. The results of the parametric studies are used to derive correlations for the drag force and to detect the hydrodynamic differences from uniform flow. The investigation parameters varied within the following ranges: power-law index 0.3 ≤ n ≤ 1, Reynolds number 0 < Re ≤ 150, and dimensionless shear rate 0.05 ≤ s ≤ 0.4.

This is a preview of subscription content, access via your institution.


  1. 1.

    Brennen, C., Fundamentals of Multiphase Flow, Cambridge University Press, 2005.

    Book  MATH  Google Scholar 

  2. 2.

    Gidaspow, D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, 1994.

    MATH  Google Scholar 

  3. 3.

    Mei, R., History Force on a Sphere Due to a Step Change in the Free-Stream Velocity, Int. J. Multiphase Flow, 1993, vol. 19, pp. 509–525.

    Article  MATH  Google Scholar 

  4. 4.

    Mei, R., Lawrence, C., and Adrian, R., Unsteady Drag on a Sphere at Finite Reynolds Number with Small Fluctuations in the Free-Stream Velocity, J. Fluid Mech., 1991, vol. 233, pp. 613–631.

    ADS  Article  MATH  Google Scholar 

  5. 5.

    Wakaba, L. and Balachandar, S., On the Added Mass Force at Finite Reynolds and Acceleration Numbers, Theor. Comput. Fluid Dyn., 2007, vol. 21, pp. 147–153.

    Article  MATH  Google Scholar 

  6. 6.

    Schiller, L. and Naumann, A., A Drag Coefficient Correlation, Zeits. Vereins Deutsch. Ing., 1935, vol. 77, pp. 318–320.

    Google Scholar 

  7. 7.

    Bagchi, P. and Balachandar, S., Effect of Free Rotation on the Motion of a Solid Sphere in Linear Shear Flow at Moderatere, Phys. Fluids, 2002, vol. 14, pp. 2719–2737.

    ADS  Article  MATH  Google Scholar 

  8. 8.

    Saffman, P., The Lift on a Small Sphere in a Slow Shear Flow, J. Fluid Mech., 1965, vol. 22, pp. 385–400.

    ADS  Article  MATH  Google Scholar 

  9. 9.

    McLaughlin, J., Inertial Migration of a Small Sphere in Linear Shear Flows, J. Fluid Mech., 1991, vol. 224, pp. 261–274.

    ADS  Article  MATH  Google Scholar 

  10. 10.

    Legendre, D. and Magnaudet, J., A Note on the Lift Force on a Spherical Bubble or Drop in a Low-Reynolds-Number Shear Flow, Phys. Fluids, 1997, vol. 9, pp. 3572–3574.

    ADS  Article  Google Scholar 

  11. 11.

    Legendre, D. and Magnaudet, J., The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow, J. Fluid Mech., 1998, vol. 368, pp. 81–126.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Dandy, D. and Dwyer, H., A Sphere in Shear Flow at Finite Reynolds Number: Effect of Shear on Particle Lift, Drag, and Heat Transfer, J. Fluid Mech., 1990, vol. 216, pp. 381–410.

    Article  Google Scholar 

  13. 13.

    Mei, R., An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number, Int. J. Multiph. Flow, 1992, vol. 18, pp. 145–147.

    Article  MATH  Google Scholar 

  14. 14.

    Kurose, R. and Komori, S., Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow, J. Fluid Mech., 1999, vol. 384, pp. 183–206.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Kim, I., Forces on a Spherical Particle in Shear Flow at Intermediate ReynoldsNumbers, Int. J. Comp. Fluid Dyn., 2006, vol. 20, pp. 137–141.

    Article  MATH  Google Scholar 

  16. 16.

    Uhlherr, P.H.T., Le, T.N., and Tiu, C., Characterization of Inelastic Power-Law Fluids Using Falling Sphere Data, Can. J. Chem. Eng., 1976, vol. 54, no. 6, pp. 497–502.

    Article  Google Scholar 

  17. 17.

    Malhotra, S. and Sharma, M.M., Experimental Measurement of Settling Velocity of Spherical Particles in Unconfined and Confined Surfactant-Based Shear Thinning Viscoelastic Fluids, J. Vis. Exp., 2014, no.83.

  18. 18.

    Dhole, S.D., Chhabra, R.P., and Eswaran, V., Flow of Power-Law Fluids past a Sphere at Intermediate Reynolds Numbers, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 4773–4781.

    Article  Google Scholar 

  19. 19.

    Krishnan, S. and Kannan, A., Effects of Particle Blockage and Eccentricity in Location on the Non-Newtonian Fluid Hydrodynamics around a Sphere, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 14867–14883.

    Article  Google Scholar 

  20. 20.

    Bocharov, O.B. and Kushnir, D.Y., Forces Acting on a Stationary Sphere in Power-Law Fluid Flow near the Wall, Thermophys. Aeromech., 2016, vol. 23, pp. 83–95.

    ADS  Article  Google Scholar 

  21. 21.

    Landau, L. and Lifshitz, E., Fluid Mech., no. 6, Elsevier Science, 2013.

    Google Scholar 

  22. 22.

    Gavrilov, A.A., Minakov, A.V., Dekterev, A.A., and Rudyak, V.Y., A Numerical Algorithm for Modeling Laminar Flows in an Annular Channel with Eccentricity, J. Appl. Ind. Math., 2011, vol. 5, pp. 559–568.

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Rudyak, V.Y., Minakov, A.V., Gavrilov, A.A., and Dekterev, A.A., Modeling of Flows in Micromixers, Thermophys. Aeromech., 2010, vol. 17, pp. 565–576.

    ADS  Article  Google Scholar 

  24. 24.

    Lien, F.S. and Leschziner, M.A., UpstreamMonotonic Interpolation for Scalar Transport with Application to Complex Turbulent Flows, Int. J. Num. Meth. Fluids, 1994, vol. 19, pp. 527–548.

    Article  MATH  Google Scholar 

  25. 25.

    Gavrilov, A.A., Finnikov, K.A., and Podryabinkin, E.V., Modeling of Steady Herschel–Bulkley Fluid Flow over a Sphere, J. Eng. Therm., 2017, vol. 26, no. 2, pp. 197–215.

    Article  Google Scholar 

  26. 26.

    Joseph, D.D. and Ocando, D., Slip Velocity and Lift, J. Fluid Mech., 2002, vol. 454, pp. 263–286.

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ya. S. Ignatenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, A.A., Finnikov, K.A., Ignatenko, Y.S. et al. Drag and Lift Forces Acting on a Sphere in Shear Flow of Power-Law Fluid. J. Engin. Thermophys. 27, 474–488 (2018).

Download citation