Skip to main content

Variable Fluid Property Effect on Heat Transfer and Frictional Flow Characteristics of Water Flowing through Microchannel

Abstract

The effects of temperature-dependent viscosity and thermal conductivity on heat transfer and frictional flow characteristics of water flowing through a microchannel are numerically investigated in this work. The hydrodynamically and thermally developing flow with no-slip, notemperature jump, and constant wall heat flux boundary condition is numerically studied using 2D continuum-based conservation equations. A significant deviation in Nusselt number from conventional theory is observed due to flattening of axial velocity profile due to temperaturedependent viscosity variation. The Nusselt number shows a significant deviation from conventional theory due to flattening of the radial temperature profile due to temperature-dependent thermal conductivity variation. It is noted that the deviation in Nusselt number from conventional theory is maximum for combined temperature-dependent viscosity and thermal conductivity variations. The effects of temperature-dependent viscosity and thermal conductivity on the Fanning friction factor are also investigated. Additionally, the effects of variable fluid properties on Poiseuille number, Prandtl number, and Peclet number are also investigated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Shah, R.K. and London, A.L., Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, New York: Academic Press, 1978.

    Google Scholar 

  2. 2.

    Herwig, H., The Effect of Variable Properties onMomentumand Heat Transfer in a Tube with Constant Heat Flux across theWall, Int. J. Heat Mass Transfer, 1985, vol. 28, pp. 423–431.

    Article  Google Scholar 

  3. 3.

    Herwig, H., Voigt, M., and Bauhaus, F.J., The Effect of Variable Properties onMomentum and Heat Transfer in a Tube with ConstantWall Temperature, Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1907–1915.

    Article  Google Scholar 

  4. 4.

    Sieder, E.N. and Tate, C.E., Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., 1936, vol. 28, pp. 1429–1433.

    Article  Google Scholar 

  5. 5.

    Kakac, S., Shah, R.K., and Aung, W., Handbook of Single-Phase Convective Heat Transfer, New York: Wiley, 1987.

    Google Scholar 

  6. 6.

    Tunc, G. and Bayazitoglu, Y., Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 765–773.

    Article  MATH  Google Scholar 

  7. 7.

    Tunc, G. and Bayazitoglu, Y., Heat Transfer in Microtube with Viscous Dissipation, Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 2395–2403

    Article  MATH  Google Scholar 

  8. 8.

    Palm, B., Heat Transfer in Microchannels, Microscale Therm. Eng., 2001, vol. 5, pp. 155–175.

    Article  Google Scholar 

  9. 9.

    Mahulikar, S.P., Herwig, H., and Hausner, O., Study of Gas Microconvection for Synthesis of Rarefaction and Nonrarefaction Effects, IEEE/ASME J.Microelectromech. Syst., 2007, vol. 16, pp. 1543–1556.

    Article  Google Scholar 

  10. 10.

    Ameel, T.A., Wang, X.M., Barron, R.F., and Warrington, R.O., Laminar Forced Convection in a Circular Tube with Constant Heat Flux and Slip Flow, Microscale Therm. Eng., 1997, vol. 1, pp. 303–320.

    Article  Google Scholar 

  11. 11.

    Guo, Z.Y. and Li, Z.X., Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale, Int. J. Heat Fluid Flow, 2003, vol. 24, pp. 284–298.

    Article  Google Scholar 

  12. 12.

    Celata, G.P., Cummo, M., Marconi, V., Mcphail, S.J., and Zummo, G., Microtube Liquid Single-Phase Heat Transfer in Laminar Flow, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3538–3546.

    Article  Google Scholar 

  13. 13.

    Peng, X.F., Peterson, G.P., and Wang, B.X., Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels, Exp. Heat Transfer, 1994, vol. 7, pp. 249–264.

    ADS  Article  Google Scholar 

  14. 14.

    Peng, X.F., Peterson, G.P., and Wang, B.X., Heat Transfer Characteristics of Water Flowing through Microchannels, Exp. Heat Transfer, 1994, vol. 7, pp. 265–283.

    ADS  Article  Google Scholar 

  15. 15.

    Sobhan, C.B. and Garimella, S.V., A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels, Microscale Therm. Eng., 2001, vol. 5, no. 4, pp. 293–311.

    Article  Google Scholar 

  16. 16.

    Steinke, M.E. and Kandlikar, S.G., Single-Phase Liquid Friction Factors in Microchannels, Int. J. Therm. Sci., 2006, vol. 45, pp. 1073–1083.

    Article  Google Scholar 

  17. 17.

    Pfahler, J., Harley, J., Bau, H., and Zemel, J., Liquid Transport inMicron and Submicron Channels, Sensors Actuators, 1990, vol. 22, pp. 431–434.

    Article  Google Scholar 

  18. 18.

    Yu, D., Warrington, R., Barron, R., and Ameel, T., An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer inMicrotubes, ASME/JSME Therm. Eng. Conf., 1995, vol. 1, no. 52, pp. 523–530.

    Google Scholar 

  19. 19.

    Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M., and Qureshi, Z.H., An Experimental Investigation of Single-Phase Forced Convection inMicrochannels, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 6, pp. 851–857.

    Article  Google Scholar 

  20. 20.

    Mala, G.M. and Li, D.Q., Flow Characteristics in Microtubes, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 2, pp. 142–148.

    Article  Google Scholar 

  21. 21.

    Lelea, D., Nishio, S., and Yakano, K., The Experimental Research on Microtube Heat Transfer and Fluid Flow of DistilledWater, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 12, pp. 2817–2830.

    Article  Google Scholar 

  22. 22.

    Yang, C.Y., Chen, C.W., Lin, T.Y., and Kandlikar, S.G., Heat Transfer and Friction Characteristics of Air Flow in Microtubes, Exp. Therm. Fluid Sci., 2012, vol. 37, pp. 12–18.

    Article  Google Scholar 

  23. 23.

    Harms, T.M., Kazmierczak,M.J., and Gerner, F.M., Developing Convective Heat Transfer in Deep Rectangular Microchannels, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 2, pp. 149–157.

    Article  Google Scholar 

  24. 24.

    Liu, J.T., Peng, X.F., and Wang, B.X., Variable-Property Effect on Liquid Flow and Heat Transfer in Microchannels, J. Chem. Eng., 2008, vol. 141, no. 1, pp. 346–353.

    Article  Google Scholar 

  25. 25.

    Liu, J.T., Peng, X.F., and Yan, W.M., Numerical Study of Fluid Flow and Heat Transfer in Microchannel Cooling Passages, Int. J. HeatMass Transfer, 2007, vol. 50, no. 9, pp. 1855–1864.

    Article  MATH  Google Scholar 

  26. 26.

    Mahulikar, S.P. and Herwig, H., Physical Effects in Laminar Microconvection due to Variations in Incompressible Fluid Properties, Phys. Fluids, 2006, vol. 18, no. 7, pp. 1–12.

    Article  Google Scholar 

  27. 27.

    Herwig, H. and Mahulikar, S.P., Variable Property Effects in Single-Phase Incompressible Flows through Microchannels, Int. J. Therm. Sci., 2006, vol. 45, no. 10, pp. 977–981.

    Article  Google Scholar 

  28. 28.

    Mahulikar, S.P., Herwig, H., Hausner, O., and Kock, F., Laminar Gas Microflow Convection Characteristics due to Steep Density Gradients, Europhys. Lett., 2004, vol. 68, no. 6, pp. 811–817.

    ADS  Article  Google Scholar 

  29. 29.

    Mahulikar, S.P. and Herwig, H., Physical Effects in Pure Continuum-Based Laminar Microconvection due to Variations of Gas Properties, J. Phys. D: Appl. Phys., 2006, vol. 39, no. 18, pp. 4116–4123.

    Article  Google Scholar 

  30. 30.

    Gulhane, N.P. and Mahulikar, S.P., Variations in Gas Properties in Laminar Microconvection with Entrance Effect, Int. J. HeatMass Transfer, 2009, vol. 52, no. 7, pp. 1980–1990.

    Article  MATH  Google Scholar 

  31. 31.

    Gulhane, N.P. and Mahulikar, S.P., Numerical Investigation on Laminar Microconvective Liquid Flow with Entrance Effect and Graetz Problem due to Variations in Thermal Properties, Heat Transfer Eng., 2012, vol. 33, no. 8, pp. 748–761.

    ADS  Article  Google Scholar 

  32. 32.

    Mahulikar, S.P. and Herwig, H., Fluid Friction in Incompressible Laminar Convection: Reynolds’ Analogy Revisited for Variable Fluid Properties, Eur. Phys. J. B: CondensedMatter Complex Syst., 2008, vol. 62, no. 1, pp. 77–86.

    Article  Google Scholar 

  33. 33.

    Gulhane, N.P. and Mahulikar, S.P., Numerical Study of Compressible Convective Heat Transfer with Variations in All Fluid Properties, Int. J. Therm. Sci., 2010, vol. 49, no. 5, pp. 786–796.

    Article  Google Scholar 

  34. 34.

    Gulhane, N.P. and Mahulikar, S.P., Numerical Study of Microconvective Water-Flow Characteristics with Variations in Properties, Nanoscale Microscale Therm. Eng., 2011, vol. 15, no. 1, pp. 28–47.

    Article  Google Scholar 

  35. 35.

    Nonino, C., Giudice, S. Del, and Savino, S., Temperature-Dependent Viscosity Effects on Laminar Forced Convection in the Entrance Region of Straight Ducts, Int. J. Heat Mass Transfer, 2006, vol. 49, no. 23, pp. 4469–4481.

    Article  MATH  Google Scholar 

  36. 36.

    Nonino, C., Giudice, S. Del, and Savino, S., Temperature-Dependent Viscosity and Viscous Dissipation Effects in Microchannel Flows with Uniform Wall Heat Flux, Heat Transfer Eng., 2010, vol. 31, no. 8, pp. 682–691.

    ADS  Article  Google Scholar 

  37. 37.

    Giudice, S. Del, Nonino, C., and Savino, S., Effects of Viscous Dissipation and Temperature-Dependent Viscosity in Thermally and Simultaneously Developing Laminar Flows in Microchannels, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 1, pp. 15–27.

    Article  Google Scholar 

  38. 38.

    Giudice, S. Del, Savino, S., and Nonino, C., Temperature-Dependent Viscosity and Thermal Conductivity Effects on the Laminar Forced Convection in Straight Microchannels, J. Heat Transfer, 2013, vol. 135, no. 10, pp. 1–8.

    Google Scholar 

  39. 39.

    Giudice, S. Del, Savino, S., and Nonino, C., Entrance and Temperature-Dependent Property Effects in the Laminar Forced Convection in Straight Ducts with Uniform Wall Temperature, J. Phys.: Conf. Ser., 2014, vol. 501, pp. 1–9.

    MATH  Google Scholar 

  40. 40.

    Kumar, R. and Mahulikar, S.P., Effect of Temperature-Dependent Viscosity Variation on Fully Developed Laminar Microconvective Flow, Int. J. Therm. Sci., 2015, vol. 98, pp. 179–191.

    Article  Google Scholar 

  41. 41.

    Kumar, R. and Mahulikar, S.P., Frictional Flow Characteristics of Microconvective Flow for Variable Fluid Properties, Fluid Dyn. Res., 2015, vol. 47, pp. 1–21.

    MathSciNet  Article  Google Scholar 

  42. 42.

    Holman, J.P., Heat Transfer, New York: McGraw-Hill, 1990.

    Google Scholar 

  43. 43.

    Sherman, F.S., Viscous Flow, New York: McGraw-Hill, 1990.

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Mahulikar, S.P. Variable Fluid Property Effect on Heat Transfer and Frictional Flow Characteristics of Water Flowing through Microchannel. J. Engin. Thermophys. 27, 456–473 (2018). https://doi.org/10.1134/S1810232818040082

Download citation