Skip to main content

Local Exergy Losses of the Sandia Flame D: A Turbulent Piloted Methane–Air Jet Flame


Exergy is a useful tool for quantifying the locations, types, and magnitudes of wastes and losses caused by unavoidable irreversibilities in real processes. However, for the typical and popular turbulent piloted non-premixed methane–air jet flame, the Sandia flame D, no detailed exergy losses have been reported. This study reports the local exergy losses of the Sandia flame D for the first time by demonstrating the local exergy losses from heat transfer, chemical reaction, gas diffusion, and viscous dissipation. The results show that the local exergy losses from heat transfer, chemical reaction, gas diffusion, and viscous dissipation are in the ranges of 0–23210.17, 0–10796.30, 0–6.79, and 0–3.39 kW/m3 in the computational domain, respectively. These make the total local exergy loss of the Sandia flame D vary in the range of 0–23282.45 kW/m3, and it is mainly contributed by heat transfer (71.42%) and chemical reaction (28.56%), followed by gas diffusion (0.01%) and viscous dissipation (0.01%). The results obtained from this study illustrate well what the local exergy losses of the Sandia flame D are as well as how they are caused and contributed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Yu, X., Zhang, Y., Li, B., and Ke, C., Three Exergy Zones of a TypicalNon-Premixed Methane-Air Jet Flame, J. Fund. Renew. Energy Appl., 2016, vol. 6, no. 3, 1000e108.

    Google Scholar 

  2. 2.

    TNF, Int. Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, 2016,

  3. 3.

    Barlow, R.S. and Frank, J.H., Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flame, Symp. (Int.) Combust., 1998, vol. 27, no. 1, pp. 1087–1095.

    Article  Google Scholar 

  4. 4.

    Karpetis, A.N. and Barlow, R.S., Measurements of Flame Orientation and Scalar Dissipation in Turbulent Partially Premixed Methane Flames, Proc. Combust. Inst., 2005, vol. 30, no. 1, pp. 665–672.

    Article  Google Scholar 

  5. 5.

    Barlow, R.S. and Karpetis, A.N., Scalar Length Scales and Spatial Averaging Effects in Turbulent Piloted Methane/Air Jet Flames, Proc. Combust. Inst., 2005, vol. 30, no. 1, pp. 673–680.

    Article  Google Scholar 

  6. 6.

    Wang, D., Tong, C., Barlow, R.S., and Karpetis, A.N., Experimental Study of Scalar Filtered Mass Density Function in Turbulent Partially Premixed Flames, Proc. Combust. Inst., 2007, vol. 31, no. 1, pp. 1533–1541.

    Article  Google Scholar 

  7. 7.

    Cai, J., Wang, D., Tong, C., Barlow, R.S., and Karpetis, A.N., Investigation of Subgrid-Scale Mixing of Mixture Fraction and Temperature in Turbulent Partially Premixed Flames, Proc. Combust. Inst., 2009, vol. 32, no. 1, pp. 1517–1525.

    Article  Google Scholar 

  8. 8.

    Barlow, R.S., Frank, J.H., Karpetis, A.N., and Chen, J.Y., Piloted Methane/Air Jet Flames: Transport Effects and Aspects of Scalar Structure, Combust. Flame, 2005, vol. 143, no. 4, pp. 1433–449.

    Article  Google Scholar 

  9. 9.

    Schneider, C., Dreizler, A., Janicka, J., and Hassel, E.P., Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames, Combust. Flame, 2003, vol. 135, no. 1, pp. 185–190.

    Article  Google Scholar 

  10. 10.

    Frank, J.H., Barlow, R.S., and Lundquist, C., Radiation and Nitric Oxide Formation in Turbulent Non-Premixed Jet Flames, Proc. Combust. Inst., 2000, vol. 28, no. 1, pp. 447–454.

    Article  Google Scholar 

  11. 11.

    Szargut, J., International Progress in Second Law Analysis, Energy, 1980, vol. 5, nos.8/9, pp. 709–718.

    Article  Google Scholar 

  12. 12.

    Dincer, I., Thermodynamics, Exergy and Environmental Impact, Energy Sources, 2000, vol. 22, no. 8, pp. 723–732.

    Article  Google Scholar 

  13. 13.

    Wall, G., Exergy—AUseful Concept, 3rd ed., Göteborg: Physical Resource Theory Group, 1986.

    Google Scholar 

  14. 14.

    Rosen, M.A. and Bulucea, C.A., Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies, Entropy, 2009, vol. 11, no. 4, pp. 820–835.

    ADS  Article  Google Scholar 

  15. 15.

    Srinivas, J. and Ramana Murthy, J.V., Second Law Analysis of The Flow of Two Immiscible Micropolar Fluids between Two Porous Beds, J. Eng. Therm., 2016, vol. 25, no. 1, pp. 126–142.

    Article  Google Scholar 

  16. 16.

    Najjar, Y.S. and Al-Absi, S., Exergy Analysis for Greener Gas Turbine Engine Arrangements, J. Eng. Therm., 2013, vol. 22, no. 3, pp. 247–256.

    Article  Google Scholar 

  17. 17.

    Gümüş, M. and Atmaca, M., Energy and Exergy Analyses Applied to a CI Engine Fueled with Diesel and Natural Gas, Energy Sources, A: Recovery, Utilization, Environmental Effects, 2013, vol. 35, no. 11, pp. 1017–1027.

    Article  Google Scholar 

  18. 18.

    Valle-Hernańdez, J., Espinosa-Paredes, G., Morales-Sandoval, J.B., and Romero-Paredes, H., Exergy and Energy Efficiencies in High-Temperature Gas Reactors (PBMR), Energy Sources, A: Recovery, Utilization, Environmental Effects, 2015, vol. 37, no. 20, pp. 2198–2207.

    Article  Google Scholar 

  19. 19.

    Najjar, Y.S.H. and Abu Eisheh, H., Exergy Analysis andGreeningPerformanceCarpets for Turbojet Engines, J. Eng. Therm., 2016, vol. 25, no. 2, pp. 262–274.

    Article  Google Scholar 

  20. 20.

    Zhang, Y., Yu, X., and Li, B., Exergy Transfer Research on the Sandia Flame D, A Turbulent Piloted Methane–Air Jet Flame, Heat Transfer Res., 2016, in press; DOI: 10.1615/HeatTransRes.2016016764.

    Google Scholar 

  21. 21.

    Frank, J.H., Kaiser, S.A., and Long, M.B., Reaction-Rate, Mixture-Fraction, and Temperature Imaging in TurbulentMethane/Air Jet Flames, Proc. Combust. Inst., 2002, vol. 29, no. 2, pp. 2687–2694.

    Google Scholar 

  22. 22.

    Magnussen, B.F., On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow, St. Louis: Nineteenth AIAAMeeting, 1981.

    Book  Google Scholar 

  23. 23.

    Gran, I.R. and Magnussen, B.F., A Numerical Study of a Bluff-Body Stabilized Diffusion Flame, part 2: Influence of Combustion Modeling and Finite-Rate Chemistry, Combust. Sci. Technol., 1996, vol. 119, nos. 1–6, pp. 191–217.

    Google Scholar 

  24. 24.

    Chui, E.H. and Raithby, G.D., Computation of Radiant Heat Transfer on a Non-Orthogonal MeshUsing the Finite-VolumeMethod, Numer. Heat Transfer B, 1993, vol. 23, pp. 269–288.

    ADS  Article  Google Scholar 

  25. 25.

    Raithby, G.D. and Chui, E.H., A Finite-Volume Method for Predicting a RadiantHeat Transfer in Enclosures with ParticipatingMedia, J. Heat Transfer, 1990, vol. 112, pp. 415–423.

    Article  Google Scholar 

  26. 26.

    Kazakov, A. and Frenklach, M., Reduced Reaction Sets Based on GRI-Mech 1.2, 2016;

    Google Scholar 

  27. 27.

    Szargut, J., Morris, D.R., and Stewart, F.R., Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, Ann Arbor: Edwards Brothers, 1988.

    Google Scholar 

  28. 28.

    Sciacovelli, A., Verda, V., and Sciubba, E., Entropy Generation Analysis as a Design Tool—A Review, Renew. Sustain. Energy Rev., 2015, vol. 43, pp. 1167–1181.

    Article  Google Scholar 

  29. 29.

    Yu, X., Study on the Characteristics of Exergy in the Process of Piloted Methane Turbulent Combustion, Master Degree in Eng. Dissertation, Harbin: Harbin Institute of Technology, 2016.

    Google Scholar 

  30. 30.

    Pitsch, H. and Steiner, H., Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D), Phys. Fluids, 2000, vol. 12, no. 10, pp. 2541–2554.

    ADS  Article  MATH  Google Scholar 

  31. 31.

    Raman, V., Fox, R.O., and Harvey, A.D., Hybrid Finite-Volume/Transported PDF Simulations of a Partially Premixed Methane–Air Flame, Combust. Flame, 2004, vol. 136, no. 3, pp. 327–350.

    Article  Google Scholar 

  32. 32.

    Kempf, A., Flemming, F., and Janicka, J., Investigation of Length Scales, Scalar Dissipation, and Flame Orientation in a Piloted Diffusion Flame by LES, Proc. Combust. Inst., 2005, vol. 30, no. 1, pp. 557–565.

    Google Scholar 

  33. 33.

    Mustata, R., Valin˜o, L., Jimeńez, C., Jones, W.P., and Bondi, S., A Probability Density Function Eulerian Monte Carlo Field Method for Large Eddy Simulations: Application to a Turbulent Piloted Methane/Air Diffusion Flame (Sandia D), Combust. Flame, 2006, vol. 145, no. 1, pp. 88–104.

    Article  Google Scholar 

  34. 34.

    Ferraris, S.A. and Wen, J.X., LES of the Sandia Flame D Using Laminar Flamelet Decomposition for Conditional Source-Term Estimation, Flow, Turb. Combust., 2008, vol. 81, no. 4, pp. 609–639.

    Article  MATH  Google Scholar 

  35. 35.

    Amani, E. and Nobari, M.R.H., An Efficient PDF Calculation of Flame Temperature and Major Species in Turbulent Non-Premixed Flames, Appl.Math. Model., 2010, vol. 34, no. 8, pp. 2223–2241.

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Kemenov, K.A. and Pope, S.B., Molecular Diffusion Effects in LES of a Piloted Methane–Air Flame, Combust. Flame, 2011, vol. 158, no. 2, pp. 240–254.

    Article  Google Scholar 

  37. 37.

    Garmory, A. and Mastorakos, E., Sensitivity Analysis of LES–CMC Predictions of Piloted Jet Flames, Int. J. Heat Fluid Flow, 2013, vol. 39, pp. 53–63.

    Article  Google Scholar 

  38. 38.

    Lysenko, D.A., Ertesvåg, I.S., and Rian, K., Numerical Simulations of the Sandia Flame D Using the Eddy Dissipation Concept, Flow, Turb. Combust., 2014, vol. 93, no. 4, pp. 665–687.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, P., Li, B. et al. Local Exergy Losses of the Sandia Flame D: A Turbulent Piloted Methane–Air Jet Flame. J. Engin. Thermophys. 27, 422–439 (2018).

Download citation