Skip to main content

Features of Propene Oxidation in Argon, Carbon Dioxide and Water Vapor Media at a High Density of Reagents


The features of propene oxidation in high-density mixtures of C3H6/O2 ([C3H6]0 = 0.23–0.25 mol/dm3, [O2]0 = 0.76–0.82 mol/dm3), diluted with argon, carbon dioxide and water vapor at uniform heating (1 K/min) to T ≤ 620 K are investigated for the first time. From the time dependences of reaction mixtures temperature it is found that propene self-ignition occurs at 465 K and does not depend on the nature of the diluent. Using mass spectrometry analysis it is demonstrated that in the composition of the products of propene oxidation in the Ar and CO2 medium predominate methanol, acetaldehyde, acetone, acetic acid and formaldehyde; in the oxidation in the H2O medium, only small amof O2 in the oxidation of propene increases in ounts of these substances were registered. Degree of consumption the following order: CO2 ≪ Ar < H2O, which is a consequence of the involvement of CO2 and H2O molecules in chemical transformations. Mechanisms of the observed processes are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Queiroz, J.P.S., Bermejo,M.D., Mato, F., and Cocero, M.J., SupercriticalWater Oxidation with Hydrothermal Flame as Internal Heat Source: Efficient and Clean Energy Production fromWaste, J. Supercrit. Fluids, 2015, vol. 96, pp. 103–113.

    Article  Google Scholar 

  2. 2.

    Yan, Q., Hou, Y., Luo, J., Miao, H., and Zhang, H., The Exergy Release Mechanism and Exergy Analysis for Coal Oxidation in Supercritical Water Atmosphere and a Power Generation System Based on the New Technology, Energy Conv. Manag., 2016, vol. 129, pp. 122–130.

    Article  Google Scholar 

  3. 3.

    Borgert, K.J. and Rubin, E.S., Oxy-Combustion Carbon Capture for Pulverized Coal in the Integrated Environmental ControlModel, Energy Procedia, 2017, vol. 114, pp. 522–529.

    Article  Google Scholar 

  4. 4.

    Chen, S., Fundamentals of Oxy-Fuel Combustion, Oxy-Fuel Combustion: Fundamentals, Theory and Practice, Chuguang, Z. and Zhaohui, L., Eds. 2018, pp. 13–30.

    Chapter  Google Scholar 

  5. 5.

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Tretyakov, D.S., and Sokol, M.Ya., Features of Low Temperature Oxidation of Hydrogen in the Medium of Nitrogen, Carbon Dioxide, and Water Vapor at Elevated Pressures, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 10469–10480.

    Google Scholar 

  6. 6.

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Ya., Kolobov, F.I., and Kolobov, V.I., Partial and CompleteMethane Oxidation in SupercriticalWater, J. Eng. Therm., 2016, vol. 25, no. 4, pp. 474–484.

    Article  Google Scholar 

  7. 7.

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Artamonov, D.O., and Sokol, M.Ya., Features of Low-TemperatureOxidation of Isobutane inWater Vapor and CarbonDioxide with IncreasedDensity of Reagents, J. Eng. Therm., 2017, vol. 26, no. 4, pp. 466–475.

    Article  Google Scholar 

  8. 8.

    Fedyeava, O.N., Antipenko, V.R., and Vostrikov, A.A., Conversion of Sulfur-Rich Asphaltite in Supercritical Water and Effect ofMetal Additives, J. Supercrit. Fluids, 2014, vol. 88, pp. 105–116.

    Article  Google Scholar 

  9. 9.

    Alshammari, Y.M. and Hellgardt, K., Sub-and SupercriticalWater Reforming of n-Hexadecane in a Tubular Flow Reactor, J. Supercrit. Fluids, 2016, vol. 107, pp. 723–732.

    Article  Google Scholar 

  10. 10.

    Fedyaeva, O.N., Antipenko, V.R., and Vostrikov, A.A., Peculiarities of Composition of Hydrocarbon and Heteroatomic Substances Obtained during Conversion of Kashpir Oil Shale in Supercritical Water, Russ. J. Phys. Chem. B, 2017, vol. 11, pp. 1246–1254.

    Article  Google Scholar 

  11. 11.

    Wilk, R.D., Cernansky, N.P., and Conen, R.S., An Experimental Study of Propene Oxidation at Low and Intermediate Temperature, Comb. Sci. Technol., 1987, vol. 52, pp. 39–58.

    Article  Google Scholar 

  12. 12.

    Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling M.J., Stoker, D., Troe, J., Tsang, W., Walker, R.W., andWarnatz, J., Evaluated Kinetic Data for CombustionModeling: Supplement II, J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 3, pp. 757–1397.

    ADS  Article  Google Scholar 

  13. 13.

    Stark, M.S. andWaddington, D.J., Oxidation of Propene in the Gas Phase, Int. J. Chem. Kin., 1995, vol. 27, pp. 123–151.

    Article  Google Scholar 

  14. 14.

    Davis, S.G., Law, C.K., and Wang, H., Propene Pyrolysis and Oxidation Kinetics in a Flow Reactor and Laminar Flames, Comb. Flame, 1999, vol. 119, pp. 375–399.

    Article  Google Scholar 

  15. 15.

    Burke, S.M., Metcalfe, W., Herbinet, O., Battin-Leclerc, F., Haas, F.M., Santner, J., Dryer, F.L., and Curran, H.J., An Experimental and Modeling Study of Propene Oxidation, part 1: Speciation Measurements in Jet-Stirred and Flow Reactors, Comb. Flame, 2014, vol. 161, pp. 2765–2784.

    Google Scholar 

  16. 16.

    Le Cong, T., Bedjanian, E., and Dagaut, P., Oxidation of Ethylene and Propene in the Presence of CO2 and H2O: Experimental and Detailed Kinetic Modeling Study, Comb. Sci. Tech., 2010, vol. 182, nos. 4–6, pp. 333–349.

    Article  Google Scholar 

  17. 17.

    Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Y., Fedorova, N.I., and Kashirtsev, V.A., Hydrothermolysis of Brown Coal in Cyclic Pressurization-Depressurization Mode, J. Supercrit. Fluids, 2012, vol. 62, pp. 155–164.

    Article  Google Scholar 

  18. 18.

    Lemmon, E.W., McLinden, M.O., and Freid, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database no. 69, Linstrom, P.J. and Mallard, W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD, 2017, 20899,

  19. 19.

    Guva, A.Y., Kratkii teplofizicheskii spravochnik (Brief Thermophysical Handbook), Novosibirsk: Sibvuzizdat, 2002.

    Google Scholar 

  20. 20.

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Ya., and Zaikovskii, A.V., Synthesis of FexOy Nanoparticles during Iron Oxidation by SupercriticalWater, Tech. Phys. Lett., 2012, vol. 38, pp. 955–958.

    ADS  Article  Google Scholar 

  21. 21.

    Zhang, C., Li, S., Wang, L., Wu, T., and Peng, S., Studies on the Decomposing Carbon Dioxide into Carbon withOxygen-DeficientMagnetite, part II: The effects of Properties ofMagnetite on Activity of Decomposition CO2 and Mechanism of the Reaction, Mater. Chem. Phys., 2000, vol. 62, pp. 52–61.

    Article  Google Scholar 

  22. 22.

    Gharnati, L., Musko, N.E., Jensen, A.D., Kontogeorgis, G.M., and Grunwaldt, J.-D., Fluid Phase Equilibria during Propylene Carbonate Synthesis from Propylene Oxide in Carbon Dioxide Medium, J. Supercrit. Fluids, 2013, vol. 82, pp. 106–115.

    Article  Google Scholar 

  23. 23.

    Korosteleva, I.G., Markova, N.A., Kolisnichenko, N.V., Ezhova, N.N., Khadzhiev, S.N., and Trukhmanova, N.I., Catalytic Synthesis of Propylene Carbonate from Propylene Oxide and Carbon Dioxide in the Presence of Rhodium Complexes Modified with Organophosphorus Ligands and Chitosan, Petrol. Chem., 2013, vol. 53, no. 6, pp. 412–417.

    Article  Google Scholar 

  24. 24.

    Lan, D.-H., Yang, F.-M., Luo, S.-L., Au, C.-T., and Yin, S.-F., Water-Tolerant Graphene Oxide as a High-Efficiency Catalyst for the Propylene Carbonate from Propylene Oxide and Carbon Dioxide, Carbon, 2014, vol. 73, pp. 351–360.

    Article  Google Scholar 

  25. 25.

    Fizicheskie i khimicheskie svoistva organicheskikh soedinenii: Spravochnik (Physical and Chemical Properties of Organic Substances: Handbook), Bogomolnyi, A.M., Ed.,Moscow: Khimiya, 2008.

  26. 26.

    Fedyaeva, O.N., Vostrikov, A.A., Antipenko, V.R., Shishkin, A.V., Kolobov, V.I., and Sokol, M.Ya., Role of SupercriticalWater and Pyrite in Transformations of Propylene, Russ. J. Phys. Chem. B, 2017, vol. 11, no. 7, pp. 1117–1128.

    Article  Google Scholar 

  27. 27.

    Computational Chemistry Comparison and Benchmark Data Base, Release 18, Standard Reference Database 101, Johnson, R.D., III, Ed., National Institute of Standards and Technology, 2018,

  28. 28.

    Holgate, R.H. and Tester, J.W., Oxidation of Hydrogen and Carbon Monoxide in Sub-and Supercritical Water: Reaction Kinetics, Pathways, andWater-Density Effects, 2: Elementary ReactionModeling, J. Phys. Chem., 1994, vol. 98, pp. 810–822.

    Google Scholar 

  29. 29.

    Lubrano Lavedera, M., Sabia, P., De Joannon, M., Cavaliere, A., and Ragguci, R., Propane Oxidation in a Jet Stirred Flow Reactor. The Effect of H2O as Diluent Species, Exp. Therm. Fluid Sci., 2018, vol. 95, pp. 35–43.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. N. Fedyaeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Artamonov, D.O. & Vostrikov, A.A. Features of Propene Oxidation in Argon, Carbon Dioxide and Water Vapor Media at a High Density of Reagents. J. Engin. Thermophys. 27, 405–414 (2018).

Download citation