Skip to main content

Droplet-Laden Mist Film Cooling Effectiveness of Cylindrical Holes Embedded in a Transverse Trench


A three-dimensional numerical model of calculating in the Euler approach is developed to calculate a two-phase turbulent near-wall flow; simulation of thermal efficiency of a gas-droplet shielding injected into a transverse trench through inclined cylindrical holes is fulfilled. The influence of the main thermo-gas-dynamic characteristics of the two-phase flow on thermal efficiency is analyzed. Significant increase in thermal efficiency was obtained by adding droplets in the nearwall coolant flow (up to 2 times in comparison with a single-phase flow). A particular advantage of this method of coolant injection is achieved at high injection parameters. It is shown that the use of two-phase gas-droplet near-wall shielding is promising for protection of surfaces against thermal influence of the heated gas flows.

This is a preview of subscription content, access via your institution.


  1. 1.

    Kutateladze, S.S. and Lenten, A.I., Heat and Mass Transfer in Turbulent Boundary Layer, New York: Hemisphere, 1989.

    Google Scholar 

  2. 2.

    Volchkov, E.P., Pristennye gazovye zavesy (Film Cooling), Novosibirsk: Nauka, 1983.

    Google Scholar 

  3. 3.

    Repukhov, V.M., Teoriya teplovoi zashchity stenki vduvom gaza (The Theory of Thermal Shielding of a Wall by Gas Injection), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  4. 4.

    Goldstein, R.J., Film Cooling, Adv. Heat Transfer, 1971, vol. 7, pp. 321–378.

    Article  Google Scholar 

  5. 5.

    Volchkov, E.P., Lebedev, V.P., and Terekhov, V.I., Heat Transfer in Turbulent Near-Wall Jets Streams, Thermophys. Aeromech., 1997, vol. 4, pp. 163–177.

    Google Scholar 

  6. 6.

    Leontiev, A.I., Heat and Mass Transfer Problems in Film Cooling, ASME J. Heat Transfer, 1999, vol. 121, pp. 509–527.

    Article  Google Scholar 

  7. 7.

    Bunker, R.S., A Review of Shaped Hole Turbine Film Cooling Technology, ASME J. Heat Transfer, 2005, vol. 127, pp. 441–453.

    Article  Google Scholar 

  8. 8.

    Fric, T.F. and Roshko, A., Vortical Structures in theWake of a Transverse Jet, J. FluidMech., 1994, vol. 279, pp. 1–47.

    ADS  Article  Google Scholar 

  9. 9.

    Waye, S.K. and Bogard, D.G., High-Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench with Various TrenchConfigurations, ASME J. Turbomach., 2007, vol. 129, pp. 294–302.

    Article  Google Scholar 

  10. 10.

    Lee, K.-D. and Kim, K.-Y., Film Cooling Performance of Cylindrical HolesEmbedded in a Transverse Trench, Num. Heat Transfer, A, 2014, vol. 65, pp. 127–143.

    ADS  Article  Google Scholar 

  11. 11.

    Khalatov, A.A., Borisov, I.I., Dashevskii, Yu.Ya., Kovalenko, A.S., and Shevtsov, S.V., Film Cooling of a Flat Surface by a Single-Row System of Inclined Holes Embedded in a Trench: Effects Due to Free-Stream Turbulence and Flow Acceleration, Thermophys. Aeromech., 2013, vol. 20, pp. 731–737.

    Article  Google Scholar 

  12. 12.

    Pakhomov, M.A., Terekhov, V.I., Khalatov, A.A., and Borisov, I.I., Film Cooling Effectiveness with Injection through Circular Holes Embedded in a Transverse Trench, Thermophys. Aeromech., 2015, vol. 22, pp. 329–338.

    ADS  Article  Google Scholar 

  13. 13.

    Talmor, E. and Weber, N., Foreign-Gas Film Cooling along Nonconverging and ConvergingWalls at Various Free-Stream Turbulence Levels, Proc. 4th Int. Heat Transfer Conference IHTC-4, Paris, France, 1970, pap. FC-8.7.

    Google Scholar 

  14. 14.

    Van Fossen, G.J., The Feasibility of Water Injection into the Turbine Coolant for Permit Gas Turbine Contingency Power for Helicopter Application, ASME J. Eng. Power, 1983, vol. 105, pp. 635–642.

    Article  Google Scholar 

  15. 15.

    Vasil’ev, A.A. and Repukhov, V.M., Calculation of Two-Phase Near-Wall Jet on Adiabatic Surface, Indust. Heat Eng., 1981, vol. 3, pp. 12–19.

    Google Scholar 

  16. 16.

    Terekhov, V.I. and Pakhomov, M.A., Numerical Investigation of the Thermal Efficiency of a Two-Phase Gas-DropletWall Screen in a Cylindrical Channel, High Temp., 2002, vol. 40, pp. 586–593.

    Article  Google Scholar 

  17. 17.

    Terekhov, V.I. and Pakhomov, M.A., The Thermal Efficiency of Near-Wall Gas-Droplets Screens: I. Numerical Modeling, Int. J. HeatMass Transfer, 2005, vol. 48, pp. 1747–1759.

    Article  MATH  Google Scholar 

  18. 18.

    Terekhov, V.I., Pakhomov, M.A., Sharov, K.A., and Shishkin, N.E., The Thermal Efficiency of Near-Wall Gas-Droplets Screens: II. Experimental Study and Comparison with Numerical Results, Int. J. Heat Mass Transfer, 2005, vol. 48, pp. 1760–1771.

    Article  Google Scholar 

  19. 19.

    Li, X. and Wang, T., Simulation of Film Cooling Enhancement withMist Injection, ASME J. Heat Transfer, 2006, vol. 128, pp. 509–519.

    Article  Google Scholar 

  20. 20.

    Kanani, H., Shams, M., and Ebrahimi, R., Numerical Modeling of Film Cooling with and without Mist Injection, Heat Mass Transfer, 2009, vol. 45, pp. 727–741.

    ADS  Article  Google Scholar 

  21. 21.

    Dhanasekaran, T.S. andWang, T., Simulation of Mist Film Cooling on Rotating Gas Turbine Blades, ASME J. Heat Transfer, 2012, vol. 134, pp. 50–62.

    Article  Google Scholar 

  22. 22.

    Jiang, Y., Zheng, Q., Dong, P., Yue, G.Q., and Gao, J., Numerical Simulation on Turbine Blade Leading-Edge High-Efficiency Film Cooling by the Application ofWater Mist, Num. Heat Transfer A, 2014, vol. 66, pp. 1341–1364.

    ADS  Article  Google Scholar 

  23. 23.

    Zhou, J.F., Wang, X.J., Li, J., and Lu, H.K., CFD Analysis of Mist/Air Film Cooling on a Flat Plate with Different Hole Types, Num. Heat Transfer, A, 2017, vol. 71, pp. 1123–1140.

    ADS  Article  Google Scholar 

  24. 24.

    Pakhomov, M.A. and Terekhov, V.I., Second Moment Closure Modeling of Flow, Turbulence and Heat Transfer in Droplet-Laden Mist Flow in a Vertical Pipe with Sudden Expansion, Int. J. HeatMass Transfer, 2013, vol. 66, pp. 210–222.

    Google Scholar 

  25. 25.

    Fadai-Ghotbi, A., Manceau, R., and Boree, J., Revisiting URANS Computations of the Backward-Facing Step Flow Using Second-Moment Closures. Influence of the Numerics, Flow, Turb. Combust., 2008, vol. 81, pp. 395–410.

    Article  MATH  Google Scholar 

  26. 26.

    Launder, B.E. and Hanjalic, K., A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows, J. Fluid Mech., 1972, vol. 52, pp. 609–638.

    ADS  Article  MATH  Google Scholar 

  27. 27.

    Beishuizen, N., Naud, B., and Roekaerts, D., Evaluation of a Modified Reynolds Stress Model for Turbulent Dispersed Two-Phase Flows Including Two-Way Coupling, Flow, Turb. Combust., 2007, vol. 79, pp. 321–341.

    Article  MATH  Google Scholar 

  28. 28.

    Zaichik, L.I., A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows, Phys. Fluids, 1999, vol. 11, pp. 1521–1534.

    ADS  Article  MATH  Google Scholar 

  29. 29.

    Derevich, I.V., Statistical Modeling of Mass Transfer in Turbulent Two-Phase Dispersed Flows: 1. Model Development, Int. J. HeatMass Transfer, 2000, vol. 43, pp. 3709–3723.

    Article  MATH  Google Scholar 

  30. 30.

    Derevich, I.V. and Zaichik, L.I., Particle Deposition from a Turbulent Flow, Fluid Dyn., 1988, vol. 23, pp. 722–729.

    ADS  Article  MATH  Google Scholar 

  31. 31.

    Reeks, M.W., On a Kinetic Equation for the Transport of Particles in Turbulent Flows, Phys. Fluids A, 1991, vol. 3, pp. 446–456.

    ADS  Article  MATH  Google Scholar 

  32. 32.

    Mitin, I.V., Sikovsky, D.Ph., and Ilyushin, B.B., Application of the Modeling Probability Distribution Functions for Lagrangian Simulation of a Passive Tracer in the Atmospheric Boundary Layer, J. Eng. Thermophys., 2016, vol. 25, pp. 495–503.

    Article  Google Scholar 

  33. 33.

    Hanjalic, K. and Jakirlic, S., Contribution towards the Second-Moment Closure Modeling of Separating Turbulent Flows, Comput. Fluids, 1998, vol. 27, pp. 137–156.

    Article  MATH  Google Scholar 

  34. 34.

    Colban, W.F., Thole, K.A., and Bogard, D., A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface, ASME. J. Turbomach., 2011, vol. 133, pap. 011002.

  35. 35.

    Mastanaiah, K. and Ganic, E.N., Heat Transfer in Two-ComponentDispersed Flow, ASME J. Heat Transfer, 1981, vol. 103, pp. 300–306.

    Article  Google Scholar 

  36. 36.

    Zhao, L. and Wang, T., An Experimental Study ofMist/Air Film Cooling on a Flat Plate with Application to Gas Turbine Airfoils, Part I: Heat Transfer, ASME J. Turbomach., 2014, vol. 136, pap. 071006.

  37. 37.

    Volchkov, E.P., Lebedev, V.P., Terekhov, V.I., and Shishkin, N.E., An Experimental Study of the Effect of Mass Fraction of Fine-DispersedWater Droplets on Effectiveness of Gas Near-Wall Jet, Sib. Phys. Techn. J., 1992, pp. 28–32.

    Google Scholar 

  38. 38.

    Terekhov, V.I., Sharov, K.A., and Shishkin, N.E., An ExperimentalStudy of Gas-SteamMixingWith aNear-Wall Gas-Drop Jet, Thermophys. Aeromech., 1999, vol. 6, pp. 311–320.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. A. Pakhomov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Droplet-Laden Mist Film Cooling Effectiveness of Cylindrical Holes Embedded in a Transverse Trench. J. Engin. Thermophys. 27, 387–398 (2018).

Download citation