Skip to main content

MHD Three-Dimensional Flow of Viscoelastic Fluid with Convective Surface Boundary Condition

Abstract

This article reports the magnetohydrodynamic (MHD) three-dimensional flow of viscoelastic fluid over a stretching surface with heat transfer. Mathematical analysis is formulated using convective boundary conditions. Computations of dimensionless velocity and temperature fields are presented. The tabulated values show excellent agreement between present and previous limiting analysis. Graphical results show the impact of embedded parameters entering into the problem.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ganesan, P. and Palani, G., FiniteDifferenceAnalysis of UnsteadyNatural ConvectionMHDpast an Inclined Plate with Variable Surface Heat and Mass Flux, Int. J. HeatMass Transfer, 2004, vol. 47, pp. 4449–4457.

    Article  MATH  Google Scholar 

  2. 2.

    Jamil, M. and Fetecau, C., Helical Flows of Maxwell Fluid between Coaxial Cylinders with Given Shear Stresses on the Boundary, Nonlin. An.: Real World Appl., 2010, vol. 11, pp. 4302–4311.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Fetecau, C., Hayat, T., Khan, M., and Fetecau, C., A Note on Longitudinal Oscillations of a Generalized Burgers Fluid in Cylindrical Domains, J. Non-Newtonian Fluid Mech., 2010, vol. 165, pp. 350–361.

    Article  MATH  Google Scholar 

  4. 4.

    Mustafa, N., Asghar, S., and Hossain, M.A., Natural Convection Flow of Second-Grade Fluid along a Vertical Heated Surface with Variable Heat Flux, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 856–5862.

    Article  MATH  Google Scholar 

  5. 5.

    Wang, S. and Tan, W.C., Stability Analysis of Soret-Driven Double-Diffusive Convection of Maxwell Fluid in a PorousMedium, Int. J. Heat Fluid Flow, 2011, vol. 32, pp. 88–94.

    Article  Google Scholar 

  6. 6.

    Keimanesh, M., Rashidi, M.M., Chamkha, A.J., and Jafari, R., Study of a Third-GradeNon-Newtonian Fluid Flow between Two Parallel Plates Using the Multi-Step Differential Transform Method, Comput. Math. Appl. (in press).

  7. 7.

    Hayat, T., Shehzad, S.A., and Qasim, M., Mixed Convection Flow of a Micropolar Fluid with Radiation and Chemical Reaction, Int. J. Num. Meth. Fluids, 2011, vol. 67, pp. 1418–1436.

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Pakdemirli, M., Hayat, T., Yürüsoy, M., Abbasbandy, S., and Asghar, S., Perturbation Analysis of aModified Second-Grade Fluid over a Porous Plate, Nonlin. An.: Real World Appl., 2011, vol. 12, pp. 1774–1785.

    Article  MATH  Google Scholar 

  9. 9.

    Fetecau, C., Hayat, T., Fetecau, C., and Ali, N., Unsteady Flow of a Second-Grade Fluid between Two Side Walls Perpendicular to a Plate, Nonlin. An.: Real World Appl., 2008, vol. 9, pp. 1236–1252.

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hayat, T., Abbas, Z., and Pop, I., Mixed Convection in the Stagnation Point Flow Adjacent to a Vertical Surface in a Viscoelastic Fluid, Int. J. Heat Mass Transfer, 2008, vol. 51, pp. 3200–3206.

    Article  MATH  Google Scholar 

  11. 11.

    Khan, M., Ali, S.H., and Qi, H., Exact Solutions for Some Oscillating Flows of a Second-Grade Fluid with a Fractional DerivativeModel, Math. Comput. Model., 2009, vol. 10, pp. 980–991.

    Google Scholar 

  12. 12.

    Fetecau, C., Mahmood, A., and Jamil, M., Exact Solutions for the Flow of a Viscoelastic Fluid Induced by a Circular Cylinder Subject to a Time-Dependent Shear Stress, Comm. Nonlin. Sci. Num. Simul., 2010, vol. 15, pp. 3931–3938.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Sajid, M., Pop, I., and Hayat, T., Fully Developed Mixed Convection Flow of a Viscoelastic Fluid between Permeable Parallel Vertical Plates, Comput. Math. Appl., 2010, vol. 59, pp. 493–498.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Ahmad, A. and Asghar, S., Flow of a Second-Grade Fluid over a Sheet Stretching with Arbitrary Velocities Subject to a Transverse Magnetic Field, Appl.Math. Lett., 2011, vol. 24, pp. 1905–1909.

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Jamil, M., Rauf, A., Fetecau, C., and Khan, N.A., Helical Flows of Second-Grade Fluid Due to Constantly Accelerated Shear Stresses, Comm.Nonlin. Sci. Num. Simul., 2011, vol. 16, pp. 1959–1969.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Xue, S.C., Phan-Thien, N., and Tanner, R.I., Three-Dimensional Numerical Simulations of Viscoelastic Flows through Planar Contractions, J. Non-Newtonian Fluid Mech., 1998, vol. 74, pp. 195–245.

    Article  MATH  Google Scholar 

  17. 17.

    Xue, S.C., Tanner, R.I., and Phan-Thien, N., Three-Dimensional Numerical Simulations of Viscoelastic Flows—Predictability and Accuracy, Comput. Meth. Appl. Mech. Eng., 1999, vol. 180, pp. 305–331.

    Article  MATH  Google Scholar 

  18. 18.

    Hayat, T., Sajid, M., and Pop, I., Three-Dimensional Flow over a Stretching Surface in a Viscoelastic Fluid, Nonlin. An.: Real World Appl., 2008, vol. 9, pp. 1811–1822.

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Hayat, T., Mustafa, M., and Sajid, M., On Mass Transfer in Three-Dimensional Flow of a Viscoelastic Fluid, Num. Meth. Partial Diff. Eqs., 2011, vol. 27, pp. 915–936.

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hayat, T., Qasim, M., and Abbas, Z., Three-Dimensional Flow of an Elastico-Viscous Fluid with Mass Transfer, Int. J. Num. Meth. Fluids, 2011, vol. 66, pp. 194–211.

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Yao, S., Fang, T., and Zhong, Y., Heat Transfer of a Generalized Stretching/Shrinking Wall Problem with Convective Boundary Conditions, Comm.Nonlin. Sci. Num. Simul., 2011, vol. 16, pp. 752–760.

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Aziz, A., A Similarity Solution for Laminar Thermal Boundary Layer over a Flat Plate with a Convective Surface Boundary Condition, Comm. Nonlin. Sci. Num. Simul., 2009, vol. 14, pp. 1064–1068.

    ADS  Article  Google Scholar 

  23. 23.

    Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Therm. Sci., 2011, vol. 50, pp. 1326–1332.

    Article  Google Scholar 

  24. 24.

    Hayat, T., Shehzad, S.A., Qasim, M., and Obaidat, S., Steady Flow of Maxwell Fluid with Convective Boundary Conditions, Z. Naturforsch. A, 2011, no. 66a, pp. 417–422.

    ADS  Article  Google Scholar 

  25. 25.

    Hayat, T., Shehzad, S.A., Qasim, M., and Obaidat, S., Flow of a Second-Grade Fluid with Convective Boundary Conditions, Therm. Sci., 2011, vol. 15, pp. 253–261.

    Article  Google Scholar 

  26. 26.

    Ariel, P.D., Generalized Three-Dimensional Flow Due to a Stretching Sheet, ZAMM, 2003, vol. 83, pp. 844–852.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Liao, S.J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Boca Raton: Chapman and Hall, CRC Press, 2003.

    Google Scholar 

  28. 28.

    Rashidi, M.M., Pour, S.A.M., and Abbasbandy, S., Analytic Approximate Solutions for Heat Transfer of a Micropolar Fluid through a PorousMedium with Radiation, Comm. Nonlin. Sci.Num. Simul., 2011, vol. 16, pp. 1874–1889.

    ADS  Article  Google Scholar 

  29. 29.

    Hayat, T., Shehzad, S.A., and Alsaedi, A., Soret and Dufour Effects in Magnetohydrodynamic (MHD) Flow of Casson Fluid, Appl.Math. Mech.-Eng. Edi., 2012, vol. 33, pp. 1301–1312.

    Article  MATH  Google Scholar 

  30. 30.

    Rashidi, M.M., Keimanesh, M., and Rajvanshi, S.C., Study of Pulsatile Flow in a Porous Annulus with the Homotopy Analysis Method, Int. J. Num. Meth. Heat Fluid Flow, 2012, vol. 22, pp. 971–989.

    Article  MATH  Google Scholar 

  31. 31.

    Shehzad, S.A., Hayat, T., Qasim, M., and Asghar, S., Effects of Mass Transfer on MHD Flow of Casson Fluid with Chemical Reaction and Suction, Braz. J. Chem. Eng., 2013, vol. 30, pp. 187–195.

    Article  Google Scholar 

  32. 32.

    Hayat, T., Shehzad, S.A., Alsaedi, F.E., and Alsaedi, A., Three-Dimensional Radiative Flow with Variable Thermal Conductivity in a Porous Medium, Eur. Phys. J. Plus, 2013, vol. 128, p. 67.

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shehzad, S.A., Hayat, T. & Alsaedi, A. MHD Three-Dimensional Flow of Viscoelastic Fluid with Convective Surface Boundary Condition. J. Engin. Thermophys. 27, 106–118 (2018). https://doi.org/10.1134/S1810232818010113

Download citation