Skip to main content

Heat and Work of the Chemical Systems

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Atkins, P., Abstr. of XXI Int. Conf. on Chemical Thermodynamics in Russia, Novosibirsk, Russia, 2017, p. 11.

    Google Scholar 

  2. 2.

    Green Book, 2nd ed., 1996, p. 48.

  3. 3.

    Atkins, P. and de Paula, J., Physical Chemistry, 9th ed., Oxford: Oxford University Press, 2010, p. 972.

    Google Scholar 

  4. 4.

    Strong, L.E. and Halliwell, H.F., An Alternative to Free Energy for Undergraduate Instruction, J. Chem. Educ., 1970, vol. 47, pp. 347–352; DOI: 10.1021/ed047p347.

    Article  Google Scholar 

  5. 5.

    Crabtree, B. and Taylor, D.J., Thermodynamics andMatter Exchange, in Biochemical Thermodynamics, Jones, M.N., Ed., Amsterdam: Elsevier, 1979.

  6. 6.

    Lover, S., Chem1 Virtual Textbook, http://www.chem1.com/acad/webtext/virtualtextbook.html.

  7. 7.

    Haywood, R.W., Equilibrium Thermodynamics for Engineers and Scientists, New York: Wiley, 1980.

    Google Scholar 

  8. 8.

    Denbigh, K., The Principles of Chemical Equilibrium, 3rd ed., Cambridge: Cambridge University Press, 1971, p. 493.

    Google Scholar 

  9. 9.

    Levine, I.N., Physical Chemistry, 6th ed., New York: Higher Education, 2009, p. 994.113.

    Google Scholar 

  10. 10.

    Bazhin, N.M. and Parmon, V.N., Conversion of the Chemical Reaction Energy into UsefulWork in the Van’t Hoff Equilibrium Box, J. Chem. Educ., 2007, vol. 84, no. 6, pp. 1053–1055; DOI: 10.1021/ed084p1053.

    Article  Google Scholar 

  11. 11.

    Straub, A.P., Deshmukh, A., and Elimelech, M., Pressure-Retarded Osmosis for Power Generation from Salinity Gradients: Is It Viable? Energy Envir. Sci., 2016, vol. 9, pp. 31–48; DOI: 10.1039/C5EE02985F.

    Article  Google Scholar 

  12. 12.

    Wei He, Yang Wang, Iqbal M. Mujtaba, and Mohammad Hasan Shaheed, An Evaluation of Membrane Properties and Process Characteristics of a Scaled-Up Pressure Retarded Osmosis (PRO) Process, Desalination, 2016, vol. 378, pp. 1–13; DOI: org/10.1016/j.desal.2015.08.022.

    Article  Google Scholar 

  13. 13.

    Achilli, A. and Childress, A.E., Pressure RetardedOsmosis: From the Vision of Sidney Loeb to the First Prototype Installation—Review, Desalination, 2010, vol. 261, pp. 205–211; DOI: 10.1016/j.desal.2010.06.017.

    Article  Google Scholar 

  14. 14.

    Bazhin, N.M., Gibbs Energy Role in Fresh and Salt Water Mixing, Desalination, 2015, vol. 365, pp. 343–346; DOI: org/10.1016/j.desal.2015.03.023.

    Article  Google Scholar 

  15. 15.

    Bazhin, N.M., Water Flux in Pressure Retarded Osmosis, Desalination, 2015, vol. 375, pp. 21–23; DOI: org/10.1016/j.desal.2015.07.027.

    Article  Google Scholar 

  16. 16.

    Ngai Yin Yip and Elimelech, M., Thermodynamic and Energy Efficiency. Analysis of Power Generation from Natural Salinity Gradients by Pressure RetardedOsmosis, Envir. Sci. Techn., 2012, vol. 46, pp. 5230–5239; DOI: org/10.1021/es300060m.

    Article  Google Scholar 

  17. 17.

    Bazhin, N.M., Mechanism of Electric Energy Production in Galvanic and Concentration Cells, J. Eng. Therm., 2011, vol. 20, no. 3, pp. 302–307; DOI: 10.1134/S1810232811030076.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. M. Bazhin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazhin, N.M. Heat and Work of the Chemical Systems. J. Engin. Thermophys. 27, 72–81 (2018). https://doi.org/10.1134/S1810232818010083

Download citation