Skip to main content

Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces


Flow characteristics of a liquid film flowing over a smooth surface and structured surface with the Reynolds number range from 10 to 1121 are studied. The mixture of R21 and R114 refrigerants is used as the test liquid. The 3D transient simulations are taken to capture the liquid film’s dynamic characteristics and spatial distribution. Effects of the inlet dimension, inlet flow rates, surface tension, and surface structuring on the wettability, average velocity, and film thickness are studied systematically. The obtained results show that surface tension is essential for an accurate simulation, while inlet width has no effect on the liquid film parameters in the steady-state flow regime. For low flow rates, wetting area and film thickness both are small, and a suggested range of Reynolds number is chosen to simulate further heat transfer in order to balance the film thickness and dry spots generation. It is shown that a ripple surface structure hinders the liquid film movement, reflected in a lower velocity and a larger film thickness compared to the smooth surface. Lateral movement of a liquid film can also be observed at the structured surface.

This is a preview of subscription content, access via your institution.


  1. 1.

    McCabe, W.L., Smith, C., and Peter, H., in Unit Operations of Chemical Engineering [M], Beijing: Chemical Industry Press, 2008, pp. 203–206.

    Google Scholar 

  2. 2.

    Zhang, J., Wang, B., Peng, X., and Du, J., Study on Heat Transfer for Falling Liquid Film Flow with Consideration of Interfacial Evaporation, Chin. J. Chem. Eng., 2011, vol. 9, pp. 145–149.

    Google Scholar 

  3. 3.

    Chen, S., Yuan, X., Fu, B., and Yu, K., Simulation of InterfacialMarangoni Convection in Gas–LiquidMass Transfer by Lattice BoltzmannMethod, Frontiers Chem. Sci. Eng., 2011, vol. 5, pp. 448–454.

    Article  Google Scholar 

  4. 4.

    Zhu, Y., Numerical Simulation of Liquid Film Flows on Uneven Walls [D], North China Electric Power University, 2014.

    Google Scholar 

  5. 5.

    Wang, X., Peng, X., Duan, Y., and Wang, B., Dynamics of Spreading of Liquid on Solid Surface, Chin. J. Chem. Eng., 2007, vol. 15, pp. 730–737.

    Article  Google Scholar 

  6. 6.

    Adomeit, P. and Renz, U., Hydrodynamics of Three-Dimensional Waves in Laminar Falling Films, Int. J. Multiphase Flow, 2000, vol. 26, pp. 1183–1208.

    Article  MATH  Google Scholar 

  7. 7.

    Moran, K., Inumaru, J., and Kawaji, M., Instantaneous Hydrodynamics of a LaminarWavy Liquid Film, Int. J.Multiphase Flow, 2002, vol. 28, pp. 731–755.

    Article  MATH  Google Scholar 

  8. 8.

    Saber, H.H. and El-Genk, M.S., Breakup of a Flowing Liquid Film on Vertical Wall, Subject to Interfacial Shear Stress, Adv. Fluid Mech. IV, 2005, vol. 36, pp. 249–258.

    Google Scholar 

  9. 9.

    Sinkunas, S., Gylys, J., Kiela, A., and Gimbutyte, I., Influence of the Wetted Surface Curvature on the Laminar Liquid Film Thickness, Heat Transfer Res., 2007, vol. 38, pp. 351–359.

    Article  Google Scholar 

  10. 10.

    Yu, Y., Wei, S., Yang Y., and Cheng, X., Experimental Study ofWater Film Falling and Spreading on a Large Vertical Plate, Progr. Nucl. Energy, 2012, vol. 54, pp. 22–28.

    Article  Google Scholar 

  11. 11.

    Hou, H., Bi, Q., Ma, H., and Wu, G., Distribution Characteristics of Falling Film Thickness around a Horizontal Tube, Desalination, 2012, vol. 285, pp. 393–398.

    Article  Google Scholar 

  12. 12.

    Sun, F., Xu, S., and Gao, Y., Numerical Simulation of Liquid Falling Film on Horizontal Circular Tubes, Frontiers Chem. Sci. Eng., 2012, vol. 6, pp. 322–328.

    Article  Google Scholar 

  13. 13.

    Qiu, Q., Meng, C., Quan, S., and Wang, W., 3D Simulation of Flow Behavior and Film Distribution outside a Horizontal Tube, Int. J. Heat Mass Transfer, 2017, vol. 107, pp. 1028–1034.

    Article  Google Scholar 

  14. 14.

    Prokudina, L.A. and Salamatov, E.A., Nonlinear Evolution of Disturbances in Liquid Film with Gas Stream, Nonlin. World, 2010, no. 11, pp. 709–713.

    Google Scholar 

  15. 15.

    Miyara, A., Numerical Simulation ofWavy Liquid Film Flowing down on a VerticalWall and an InclinedWall, Int. J. Therm. Sci., 2000, vol. 39, pp. 1015–1027.

    Article  Google Scholar 

  16. 16.

    Aktershev, S.P. and Alekseenko, S.V., Simulation of Three-Dimensional Waves in a Liquid Film, J. Appl. Mech. Techn. Phys., 2014, vol. 55, pp. 979–989.

    ADS  Article  MATH  Google Scholar 

  17. 17.

    Narendranath, A.D., Hermanson, J.C., Kolkka, R.W., Struthers, A.A., and Allen, J.S., The Effect of Gravity on the Stability of an Evaporating Liquid Film, Micrograv. Sci. Technol., 2014, vol. 26, pp. 189–199.

    ADS  Article  Google Scholar 

  18. 18.

    Guzanov, V.V., Bobylev, A.V., Kvon, A.Z., Markovich, D.M., and Kharlamov, S.M., Specific Features of Three-Dimensional Wave Regimes Development in a Vertically Falling Liquid Film, Techn. Phys. Lett., 2016, vol. 42, pp. 234–237.

    ADS  Article  Google Scholar 

  19. 19.

    Zhang, J., Peng, X., and Peterson, G.P., Experimental Investigation on the Hydrodynamics of Falling Liquid Film Flow by Nonlinear Description Procedure, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 3847–3852.

    Article  Google Scholar 

  20. 20.

    Zhang, J., Wang, B., and Peng, X., On the Effect of Thermocapillarity for Falling Liquid Film Flow with Consideration of Humidity Condition, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 4365/4366.

    Article  Google Scholar 

  21. 21.

    Pavlenko, A.N., Lel, V.V., Serov, A.F., Nazarov, A.D., and Matsekh, A.D.,Wave Amplitude Growth and Heat Transfer in Falling Intensively Evaporating Liquid Film, J. Eng. Therm., 2002, vol. 11, pp. 7–43.

    Google Scholar 

  22. 22.

    Pavlenko, A.N., Surtaev, A.S., and Chernyavskiy, A.N., Breakdown of a Falling Wave Liquid Film during Nonstationary Heat Release, Heat Transfer Res., 2008, vol. 39, pp. 509–517.

    Article  Google Scholar 

  23. 23.

    Chernyavskiy, A.N. and Pavlenko, A.N.,NumericalSimulation ofHeat Transfer and Determination of Critical Heat Fluxes at Nonsteady Heat Generation in FallingWavy Liquid Films, Int. J. HeatMass Transfer, 2016, vol. 105, pp. 648–654.

    Article  Google Scholar 

  24. 24.

    Luo, S., Li, H., Fei, W., and Wang, Y., Effect of Counter Current Gas Phase on Liquid Film, Frontiers Chem. Eng. China, 2009, vol. 3, iss. 2, pp. 135–137.

    Google Scholar 

  25. 25.

    Chinnov, E.A., The Effect of Wave Characteristics on Rivulet Formation in Heated Liquid Films, Thermophys. Aeromech., 2009, vol. 16, pp. 69–76.

    ADS  Google Scholar 

  26. 26.

    Feoktistov, D.V., Orlova, E.G., and Velicanov, V.D., Experimental Research Conception of Thin Liquid Film Boiling and Evaporation, Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment, April, 22–23, France: EDP Sciences, 2015.

    Google Scholar 

  27. 27.

    Zaitsev, D.V. and Kabov, O.A., Rupture of a Locally Heated Liquid Film Driven by the Shear Stress of Gas and Gravity, 6th Int. Symposium onMultiphase Flow,HeatMass Transfer and Energy Conversion, July, 11–15, USA, 2009.

    Google Scholar 

  28. 28.

    Szulczewska, B., Zbicinski, I., and Górak, A., Liquid Flow on Structured Packing: CFD Simulation and Experimental Study, Chem. Eng. Technol., 2003, vol. 26, pp. 580–584.

    Article  Google Scholar 

  29. 29.

    Ataki, A. and Bart, H.J., Experimental and CFD Simulation Study for the Wetting of a Structured Packing Element with Liquids, Chem. Eng. Technol., 2006, vol. 29, pp. 336–347.

    Article  Google Scholar 

  30. 30.

    Chen, J., Liu, C., Yuan, X., and Yu, G., CFD Simulation of Flow andMass Transfer in Structured Packing Distillation Columns, Chin. J. Chem. Eng., 2009, vol. 17, pp. 381–388.

    Article  Google Scholar 

  31. 31.

    Yoshiyuki, I. and Xi, C., Development of Numerical Prediction of Liquid Film Flows on Packing Elements in Absorbers, IHI Eng. Rev., 2011, vol. 44, pp. 1–8.

    Google Scholar 

  32. 32.

    Viva, A., Aferka, S., Brunazzi, E., Marchot, P., Crine, M., and Toye, D., Processing of X-Ray Tomographic Images: A Procedure Adapted for the Analysis of Phase Distribution in Mellapak Plus 752.Y and Katapak-SP Packings, Flow Meas. Instrum., 2011, vol. 22, pp. 279–290.

    Article  Google Scholar 

  33. 33.

    Janzen, A., Steube, J., Aferka, S., Kenig, E.Y., Crine, M., Marchot, P., and Toye, D., Investigation of Liquid Flow Morphology inside a Structured Packing Using X-Ray Tomography, Chem. Eng. Sci., 2013, vol. 102, pp. 451–460.

    Article  Google Scholar 

  34. 34.

    Zhang, X., Yao, L., Qiu, L., and Zhang, X., Three-Dimensional Computational Fluid DynamicsModeling of Two-Phase Flow in a Structured Packing Column, Chin. J. Chem. Eng., 2013, vol. 21, pp. 959–966.

    Article  Google Scholar 

  35. 35.

    Grunig, J., Kim, S.J., and Kraume, M., Liquid Film Flow on Structured Wires: FluidDynamics and Gas-Side Mass Transfer, AIChE. J., 2013, vol. 59, pp. 295–302.

    Article  Google Scholar 

  36. 36.

    Pavlenko, A.N., Zhukov, V.E., Pecherkin, N.I., Chekhovich, V.Yu., Volodin, O.A., Shilkin, A., and Grossmann, C., Investigation of Flow Parameters and Efficiency of Mixture Separation on a Structured Packing, AIChE J., 2014, vol. 60, pp. 690–705.

    Article  Google Scholar 

  37. 37.

    Haroun, Y., Raynal, L., and Alix, P., Prediction of Effective Area and Liquid Hold-up in Structured Packings by CFD, Chem. Eng. Res. Design, 2014, vol. 92, pp. 2247–2254.

    Article  Google Scholar 

  38. 38.

    Wu, Z., Liu, M., Liu, Q., Song, Z., and Wang, S., Influence of the Inclined Waving Wall on the Surface Wave Evolution of Liquid Film, Acta Phys. Sinica, 2015, vol. 64, pp. 253–259.

    Google Scholar 

  39. 39.

    Pavlenko, A.N., Zhukov, V.E., Pecherkin, N.I., Li, X., and Sui, H., Features of Liquid Mixtures Separation in Large-Scale Distillation Columns with Structured Packing. New Ideas and Approaches, J. Phys.: Conference Ser., vol. 754, no. 042012, IOP Publ., 2016.

    Google Scholar 

  40. 40.

    Pavlenko, A.N., Zeng, J., Pecherkin, N.I., Zhukov, V.E., and Volodin, O.A., Separation Efficiency and Pressure Drop of SiC Ceramic and Mellapak Structured Packings, J. Eng. Thermophys., 2016, vol. 25, pp. 1–14.

    Article  Google Scholar 

  41. 41.

    Pavlenko, A.N, Li, X., Li, H., Gao, X., Volodin, O.A., Surtaev, A.S., and Serdyukov, V.S., The Influence of theMicrotexture, Corrugation Inclination Angle, and Perforation of Corrugated Surfaces on the Character of Liquid Spreading, Techn. Phys. Lett., 2015, vol. 41, iss. 8, pp. 774–777.

    Google Scholar 

  42. 42.

    Pavlenko, A.N., Volodin, O.A., and Surtaev A.S., Hydrodynamics in Falling Liquid Films on Surfaces with Complex Geometry, Appl. Therm. Eng., 2016, vol. 114, pp. 1265–1274.

    Article  Google Scholar 

  43. 43.

    Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer at Evaporation of Falling Films of Freon Mixture on the Smooth and Structured Surfaces, Thermophys. Aeromech., 2011, vol. 18, pp. 579–589.

    ADS  Article  Google Scholar 

  44. 44.

    Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Heat Transfer and Crisis Phenomena at Boiling in Freon Mixture Films Falling down the Structured Tube, Thermophys. Aeromech., 2012, vol. 19, pp. 109–119.

    ADS  Article  Google Scholar 

  45. 45.

    Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Flow Dynamics, Heat Transfer and Crisis Phenomena in the Films of Binary Freon Mixtures, Falling over the Structured Surface, Int. J. Fluid Mech. Res., 2012, vol. 39, pp. 125–135.

    Article  Google Scholar 

  46. 46.

    Volodin, O.A., Pavlenko, A.N., and Pecherkin, N.I.,Heat Transfer andWave Characteristics of a Binary Freon Film Flowing over a Three-Dimensional Textured Surface, High Temp., 2013, vol. 51, pp. 785–794.

    Article  Google Scholar 

  47. 47.

    Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158.

    Article  Google Scholar 

  48. 48.

    Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A.,Heat Transfer and Crisis Phenomena at the Film Flows of Freon Mixture over Vertical Structured Surfaces, Heat Transfer Eng., 2016, vol. 37, nos. 3/4, pp. 257–268.

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to X. Gao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yi, F., Li, X. et al. Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces. J. Engin. Thermophys. 27, 1–19 (2018).

Download citation