Skip to main content

Eulerian–Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling

Abstract

The nucleate pool boiling heat transfer of ferrofluid on a horizontal plate in the presence of a non-uniform magnetic field has been studied numerically using Eulerian–Eulerian approach. Also, the wall partitioning model was extended to consider the boiling surface modification by the nanoparticles deposition on the heated surface. Adding nanoparticles causes deterioration in the boiling heat transfer coefficient and void fraction. Moreover, applying the magnetic field intensifies these reductions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kim, S., Kim, H.D., Kim, H., Ahn, H.S, Jo, H., Kim, J., et al., Effects of Nanofluid and Surfaces with Nanostructure on the Increase of CHF, Exp. Therm. Fluid Sci., 2010, vol. 34, pp. 487–495.

    Article  Google Scholar 

  2. 2.

    Lee, J.H., Lee, T., and Jeong, Y.H., Experimental Study on the Pool Boiling CHF Enhancement Using Magnetite–Water Nanofluids, Int. J. HeatMass Transfer, 2012, vol. 55, pp. 2656–2663.

    Article  Google Scholar 

  3. 3.

    Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena, Nanoscale Res. Lett., 2011, vol. 6, pp. 232–249.

    ADS  Article  Google Scholar 

  4. 4.

    Song, S.L., Lee, J.H., and Chang, S.H., CHF Enhancement of SiC Nanofluid in Pool Boiling Experiment, Exp. Therm. Fluid Sci., 2014, vol. 52, pp. 12–18.

    Article  Google Scholar 

  5. 5.

    Okawa, T., Takamura, M., and Kamiya, T., Boiling Time Effect on CHF Enhancement in Pool Boiling of Nanofluids, Int. J. HeatMass Transfer, 2012, vol. 55, pp. 2719–2725.

    Article  Google Scholar 

  6. 6.

    Mohammadpourfard, M., Aminfar, H., and Sahraro, M., Numerical Simulation of Nucleate Pool Boiling on the Horizontal Surface for Ferrofluid under the Effect of Non-Uniform Magnetic Field, HeatMass Transfer, 2014, pp. 1–10.

    Google Scholar 

  7. 7.

    Huang, C.K., Lee, C.W., and Wang, C.K., Boiling Enhancement by TiO2 Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 4895–4903.

    Article  Google Scholar 

  8. 8.

    Ahn, H.S. and Kim, M.H., The Boiling Phenomenon of Alumina Nanofluid near Critical Heat Flux, Int. J. Heat Mass Transfer, 2013, vol. 62, pp. 718–728.

    Article  Google Scholar 

  9. 9.

    Yang, X-F. and Liu, Z-H., Pool Boiling Heat Transfer of Functionalized Nanofluid under Sub-Atmospheric Pressures, Int. J. Therm. Sci., 2011, vol. 50, pp. 2402–2412.

    Article  Google Scholar 

  10. 10.

    Mourgues, A., Hourtané, V., Muller, T., and Caron-Charles, M., Boiling Behaviors and Critical Heat Flux on a Horizontal and Vertical Plate in Saturated Pool Boiling with and without ZnO Nanofluid, Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 595–607.

    Article  Google Scholar 

  11. 11.

    Bang, I.C. and Chang, S.H., Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids from a Plain Surface in a Pool, Int. J. Heat Mass Transfer, 2005, vol. 48, pp. 2407–2419.

    Article  Google Scholar 

  12. 12.

    Pioro, I.L., Rohsenow,W., and Doerffer, S.S., Nucleate Pool-Boiling Heat Transfer, I: Review of Parametric Effects of Boiling Surface, Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 5033–5044.

    MATH  Google Scholar 

  13. 13.

    Kim, H.D., Kim, J., and Kim, M.H., Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling, Int. J. Multiphase Flow, 2007, vol. 33, pp. 691–706.

    Article  Google Scholar 

  14. 14.

    Sarit, K.D., Prakash Narayan, G., and Anoop, K.B., Survey on Nucleate Pool Boiling of Nanofluids: The Effect of Particle Size Relative to Roughness, J. Nanopart. Res., 2008, vol. 10, pp. 1099–1108.

    Article  Google Scholar 

  15. 15.

    Wu, J.M. and Zhao, J.A., ReviewofNanofluidHeat Transfer and CriticalHeat Flux Enhancement—Research Gap to Engineering Application, Progr. Nucl. Energy, 2013, vol. 66, pp. 13–24.

    Article  Google Scholar 

  16. 16.

    Kim, S., Kim, H.D., Kim, H., Ahn, H.S., Jo, H., Kim, J., et al. Effects of Nano-Fluid and Surfaces with Nanostructure on the Increase of CHF, Exper. Therm. Fluid Sci., 2010, vol. 34, pp. 487–495.

    Article  Google Scholar 

  17. 17.

    Hegde, R., Rao, S., and Reddy, R.P., Experimental Studies onCHFEnhancement in Pool BoilingwithCuO–Water Nanofluid, Heat Mass Transfer, 2012, vol. 48, pp. 1031–1041.

    ADS  Article  Google Scholar 

  18. 18.

    Kwark, S.M., Kumar, R., Moreno, G., Yoo, J., and You, S.M., Pool Boiling Characteristics of Low Concentration Nanofluids, Int. J. HeatMass Transfer, 2010, vol. 53, pp. 972–981.

    Article  Google Scholar 

  19. 19.

    Vafaei, S. and Borca-Tasciuc, T., Role of Nanoparticles on Nanofluid Boiling Phenomenon: Nanoparticle Deposition, Chemical Eng. Res. Design, 2014, vol. 92, pp. 842–856.

    Article  Google Scholar 

  20. 20.

    Phan, H.T., Caney, N., Marty, P., Colasson, S.P., and Gavillet, J., Surface Coating with Nanofluids: The Effects on Pool Boiling Heat Transfer, Nanoscale Microscale Thermophys. Eng., 2010, vol. 14, pp. 229–244.

    Article  Google Scholar 

  21. 21.

    Kim, H.D. and Kim, M.H., Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids, Appl. Phys. Lett., 2007, vol. 91, pp. 141041–141043.

    Google Scholar 

  22. 22.

    Forrest, E., Williamson, E., Buongiorno, J., Hu, L.W., Rubner, M., and Cohen, R., Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 58–67.

    Article  Google Scholar 

  23. 23.

    Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J., SurfaceWettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 5459–5471.

    Article  Google Scholar 

  24. 24.

    Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J., How Does Surface Wettability Influence Nucleate Boiling? Comptes Rendus Mécan., 2009, vol. 337, pp. 251–259.

    ADS  Article  Google Scholar 

  25. 25.

    Jordan, A., Scholz, R., Wust, P., Fähling, H., and Roland, F., Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles, J. Magn. Magn. Mater., 1999, vol. 201, pp. 413–419.

    ADS  Article  Google Scholar 

  26. 26.

    Shuchi, S., Sakatani, K., and Yamaguchi, H., An Application of a BinaryMixture ofMagnetic Fluid for Heat Transport Devices, J. Magn. Magn. Mater., 2005, vol. 289, pp. 257–259.

    ADS  Article  Google Scholar 

  27. 27.

    Aminfar, H., Mohammadpourfard, M., and Maroofiazar, R., Numerical Study of Non-Uniform Magnetic Fields Effects on Subcooled Nanofluid Flow Boiling, Progr. Nucl. Energy, 2014, vol. 74, pp. 232–241.

    Article  Google Scholar 

  28. 28.

    Junhong, L., Jianming, G., Zhiwei L., and Hui, L., Experiments and Mechanism Analysis of Pool Boiling Heat Transfer Enhancement with Water-Based Magnetic Fluid, Heat Mass Transfer, 2004, vol. 41, pp. 170–175.

    ADS  Google Scholar 

  29. 29.

    Li, X., Li, K., Tu, J., and Buongiorno, J., On Two-Fluid Modeling of Nucleate Boiling of Dilute Nanofluids, Int. J. HeatMass Transfer, 2014, vol. 69, pp. 443–450.

    Article  Google Scholar 

  30. 30.

    Tu, J.Y. and Yeoh, G.H., On Numerical Modeling of Low-Pressure Subcooled Boiling Flows, Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 1197–1209.

    Article  MATH  Google Scholar 

  31. 31.

    Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, Paris: Eyrolles, 1975.

    MATH  Google Scholar 

  32. 32.

    Yamaguchi, H., Engineering Fluid Mechanics, Netherlands: Springer Science, 2008.

    MATH  Google Scholar 

  33. 33.

    Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1976.

    MATH  Google Scholar 

  34. 34.

    Tzirtzilakis, E.E. and Kafoussias, N.G., Three-Dimensional Magnetic Fluid Boundary Layer Flow over a Linearly Stretching Sheet, J. Heat Transfer, 2010, vol. 132, pp. 11701–11708.

    Article  Google Scholar 

  35. 35.

    Ishii, M. and Zuber, N., Drag Coefficient and RelativeVelocity in Bubbly, Droplet or Particulate Flows, AIChE J., 1979, vol. 25, pp. 843–855.

    Google Scholar 

  36. 36.

    Tomiyama, A., Struggle with Computational Bubble Dynamics, Proc. 3rd Int. Conf. on Multiphase Flow ICMF’98, June 8–12, Lyon, France, 1998.

    Google Scholar 

  37. 37.

    Antal, S.P., Lahey, R.T., and Flaherty, J.E., Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–652.

    Article  MATH  Google Scholar 

  38. 38.

    Burns, A.D., Frank, T., Hamill, I., and Shi, J., The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multiphase Flow, Proc. Fifth Int. Multiphase Flow Conf., Yokohama, Japan, 2004.

    Google Scholar 

  39. 39.

    Zuber, N., On the Dispersed Two-Phase Flow in the Laminar Flow Regime, Chem. Eng. Sci., 1964, vol. 19, pp. 897–917.

    Article  Google Scholar 

  40. 40.

    Chandrasekar, M., Suresh, S., Srinivasan, R., and Bose, A.C., New AnalyticalModels to Investigate Thermal Conductivity of Nanofluids, J. Nanosci. Nanotechnol., 2009, vol. 9, pp. 533–538.

    Article  Google Scholar 

  41. 41.

    Hamilton, R.L. and Crosser, O.K., Thermal Conductivity of Heterogeneous Two-Component Systems, Industr. Eng. Chem. Fund., 1962, vol. 1, pp. 187–191.

    Article  Google Scholar 

  42. 42.

    Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., 1952, vol. 20, pp. 571–581.

    ADS  Article  Google Scholar 

  43. 43.

    Li, X.D., Wei, W., Wang, R.S., and Shi, Y.M., Numerical and Experimental Investigation of Heat Transfer on Heating Surface during Subcooled Boiling Flow of Liquid Nitrogen, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 1510–1516.

    Article  Google Scholar 

  44. 44.

    Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., Study of Bubble Growth in Water Pool Boiling through Synchronized, Infrared Thermometry and High-Speed Video, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 4185–4192.

    Article  Google Scholar 

  45. 45.

    Collier, J.G. and Thome, J.R., Convective Boiling and Condensation, Oxford: Oxford Sci. Publ., 1994.

    Google Scholar 

  46. 46.

    Fritz, W., Maximum Volume of Vapour Bubbles, Physik Zeitschr, 1935, vol. 36, pp. 379–384.

    Google Scholar 

  47. 47.

    Narayan, G.P., Anoop, K.B., and Das, S.K., Mechanism of Enhancement/Deterioration of Boiling Heat Transfer Using Stable Nanoparticle Suspensions over Vertical Tubes, J. Appl. Phys., 2007, vol. 102, no. 074317.

    Google Scholar 

  48. 48.

    You, S.M., Kim, J.H., and Kim, K.H., Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., 2003, vol. 83, p. 3374.

    ADS  Article  Google Scholar 

  49. 49.

    Kurul, N. and Podowski, M.Z., On the Modeling of Multidimensional Effects in Boiling Channels, ANS Proc. 27th Natl. Heat Transfer Conf.,Minneapolis,MN, 1991.

    Google Scholar 

  50. 50.

    Tolubinski, V.I. and Kostanchuk, D.M., Vapor Bubbles Growth Rate and Heat Transfer Intensity at SubcooledWater Boiling, 4th Int. Heat Transfer Conf., Paris, France, 1970, vol. 5, pap. no. B-2.8.

  51. 51.

    Aminfar, H., Mohammadpourfard, M., and Maroofiazar, R., Experimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Annulus, Exp. Therm. Fluid Sci., 2014, vol. 58, pp. 156–169.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Aminfar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mortezazadeh, R., Aminfar, H. & Mohammadpourfard, M. Eulerian–Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling. J. Engin. Thermophys. 26, 580–597 (2017). https://doi.org/10.1134/S1810232817040129

Download citation