Skip to main content

Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects


The flow, heat and mass transfer of water-based nanofluid are examined between two horizontal parallel plates in a rotating system. The effects of Brownian motion, thermophoresis, viscosity and Hall current parameters are considered. The governing partial differential equations are reduced to ordinary differential equations that are then solved numerically using the Runge–Kutta–Fehlberg method. Validation of numerical solution is achieved with an exact solution of primary velocity and found to be in good agreement. Results show that both surfaces experience opposite behavior regarding skin friction, Nusselt and Sherwood numbers in both primary and secondary flows. These physical quantities depend upon dimensionless parameters and numbers.

This is a preview of subscription content, access via your institution.


  1. 1.

    Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Developments and Applications of Non-Newtonian Flows, Siginer, D.A and Wang, H.P. Eds., FED-1995, vol. 231, pp. 99–105.

    Google Scholar 

  2. 2.

    Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Therm. Sci., 2011, vol. 50, pp. 1326–1332.

    Article  Google Scholar 

  3. 3.

    Khan, W.A. and Aziz, A., Natural Convection Flow of a Nanofluid over a Vertical Plate with Uniform Surface Heat Flux, Int. J. Therm. Sci., 2011, vol. 50, pp. 1207–1214.

    Article  Google Scholar 

  4. 4.

    Das, S., Jana, R.N., and Makinde, O.D., Mixed Convective Magnetohydrodynamic Flow in a Vertical Channel Filled with Nanofluids, Eng. Sci. Tech. Int. J., 2015, vol. 18, pp. 244–255.

    Article  Google Scholar 

  5. 5.

    Das, S., Mandal, H.K., Jana, R.N., and Makinde, O.D., Magneto-Nanofluid Flow past an Impulsively Started Porous Flat Plate in a Rotating Frame, J. Nanofluids, 2015, vol. 4, pp. 167–175.

    Article  Google Scholar 

  6. 6.

    Makinde, O.D. and Mutuk, W.N., Hydromagnetic Thermal Boundary Layer ofNanofluids over a Convectively Heated Flat Plate with Viscous Dissipation and Ohmic Heating, UPB Sci. Bull. Ser. A, 2015, vol. 76, pp. 181–192.

    Google Scholar 

  7. 7.

    Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, pp. 240–250.

    Article  Google Scholar 

  8. 8.

    Mabood, F., Khan, W.A., and Ismail, A.I.M., MHD Boundary Layer Flow and Heat Transfer of Nanofluids over a Nonlinear Stretching Sheet. A Numerical Study, J. Magn. Magn. Mater., 2015, vol. 374, pp. 569–576.

    ADS  Article  Google Scholar 

  9. 9.

    Ibrahim, W. andMakinde, O.D., Double-Diffusive inMixed Convection andMHD Stagnation Point Flow of Nanofluid over a Stretching Sheet, J. Nanofluids, 2015, vol. 4, pp. 28–37.

    Article  Google Scholar 

  10. 10.

    Ferdows, M., Chapal, S.M., and Afify, A.A., Boundary Layer Flow and Heat Transfer of a Nanofluid over a PermeableUnsteady Stretching Sheet with Viscous Dissipation, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 3, pp. 216–228.

    Article  Google Scholar 

  11. 11.

    Hide, R. and Roberts, P.H., The Origin of the Mean Geomagnetic Field, in Physics and Chemistry of the Earth, New York: Pergamon Press, 1961, vol.4.

  12. 12.

    Dieke, R.H., Internal Rotation of the Sun, in Annual Reviews of Astronomy and Astrophysics, Goldberg, L., Ed., Annual Reviews, 1970, vol. 8, pp. 327/328.

    ADS  Google Scholar 

  13. 13.

    Mohan, M., Combined Effects of Free and Forced Convection onMagnetohydrodynamic Flow in a Rotating Channel, Proc. Indian Acad. Sci., 1977, vol. 85, pp. 383–401.

    ADS  MATH  Google Scholar 

  14. 14.

    Makinde, O.D. and Onyejekwe, O.O., A Numerical Study of MHD Generalized Couette Flow and Heat Transfer with Variable Viscosity and Electrical Conductivity, J. Magn. Magn. Mater., 2011, vol. 323, pp. 2757–2763.

    ADS  Article  Google Scholar 

  15. 15.

    Rout, B.R., Parida, S.K., and Pattanayak, H.B., Effect of Radiation and Chemical Reaction on Natural ConvectiveMHD Flow through a PorousMedium with Double Diffusion, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 1, pp. 53–65.

    Article  Google Scholar 

  16. 16.

    Sheikholeslami, M., Gorji-Bandpay, M., and Ganji, D.D., MHD Free Convection in an Eccentric Semi-Annulus Filled with Nanofluid, J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 1204–1216.

    Article  Google Scholar 

  17. 17.

    Mabood, F. and Mastroberardino, A., Melting Heat Transfer on MHD Convective Flow of a Nanofluid over a Stretching Sheet with Viscous Dissipation and Second-Order Slip, J. Taiwan Inst. Chem. Eng., 2015, vol. 57, pp. 62–68.

    Article  Google Scholar 

  18. 18.

    Mabood, F., Abdel-Rahman, R.G., and Lorenzini, G., Effect ofMeltingHeat Transfer and Thermal Radiation on Casson Fluid Flow in Porous Medium over Moving Surface with Magnetohydrodynamics, J. Eng. Thermophys., 2016, vol. 25, no. 4, pp. 536–547.

    Article  Google Scholar 

  19. 19.

    Cramer, K.R. and Pai, S.I., Magnetofluid Dynamics for Engineers and Applied Physicists, New York: McGraw–Hill, 1973.

    Google Scholar 

  20. 20.

    Rao, D.R.V.P. and Krishna, D.V., Hall Effects on Free and Forced Convective Flow in a Rotating Channel, Acta Mech., 1982, vol. 43, pp. 49–59.

    Article  MATH  Google Scholar 

  21. 21.

    Hayat, T., Abbas, Z., and Asghar, S., Effects of Hall Current and Heat Transfer on Rotating Flow of a Second-Grade Fluid through a Porous Medium, Comm. Nonlin. Sci. Numer. Simul., 2008, vol. 13, pp. 2177–2192.

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Seth, G.S., Nandkeolyar, R., and Ansari, M.S., Hall Effects on Oscillatory Hydromagnetic Couette Flow in a Rotating System, Int. J. Acad. Res., 2009, vol. 1, no. 6, pp. 6–17.

    Google Scholar 

  23. 23.

    Chauhan, D.S. and Agrawal, R., Effects of Hall Current onMHD Flow in a Rotating Channel Partially Filled with a PorousMedium, Chem. Eng. Comm., 2010, vol. 197, pp. 830–845.

    Article  Google Scholar 

  24. 24.

    Sarkar, B.C., Das, S., and Jana, R.N., Combined Effects of Hall Currents and Rotation on Steady Hydromagnetic Couette Flow, Res. J. Appl. Sci. Eng. Tech., 2013, vol. 5, pp. 1864–1875.

    Google Scholar 

  25. 25.

    Jha, B.K. and Apere, C.A., Combined Effects of Hall Current and Ion-Slip Current on Unsteady MHD Couette Flow in a Rotating System, J. Phys. Soc. Japan, 2010, vol. 79, pp. 1–9.

    Article  Google Scholar 

  26. 26.

    Guria, M. and Jana, R.N., Hall Effects on the Hydromagnetic Convective Flow through a Rotating Channel under GeneralWall Conditions, Magnetohydrodyn., 2007, vol. 43, pp. 287–300.

    ADS  Google Scholar 

  27. 27.

    Nowar, K., Peristaltic Flow of a Nanofluid under the Effect of Hall Current and PorousMedium, Math. Prob. Eng., 2014; art. ID 389581.

    Google Scholar 

  28. 28.

    Narayana, P.V.S., Venkateswarlu, B., and Venkataramana, S., Effects of Hall Current and Radiation Absorption on MHDMicropolar Fluid in a Rotating System, Ain Shams Eng. J., 2013, vol. 4, pp. 843–854.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Mabood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mabood, F., Khan, W.A. & Makinde, O.D. Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects. J. Engin. Thermophys. 26, 553–566 (2017).

Download citation