Skip to main content

Features of low-temperature oxidation of isobutane in water vapor and carbon dioxide with increased density of reagents

Abstract

The oxidation of isobutane at high density of reagents in a mixture of i-C4H10/O2/H2O and i-C4H10/O2/CO2 with oxygen deficiency (a molar ratio [O2]0/[i-C4H10]0 = 3.5–5.8) has been studied for the first time. The experiments were carried out in a tubular reactor under uniform heating (1 K/min) to 590 K. Data on the kinetics, auto-ignition temperature, and the products of isobutane conversion have been obtained. The auto-ignition was found to be a two-stage process and begin at a temperature of 510–522 K. The heat capacity of the reaction mixture suppressed the autoacceleration of the oxidation. Mass spectrometric analysis of the reactants revealed a difference in the mechanisms of isobutane conversion in water vapor and carbon dioxide. In water vapor, the oxidation is dominant and is realized with the participation of vibrationally excited O*2 molecules, which appear mainly from resonant exchange with H2O* molecules. In the CO2 medium, the oxidation proceeds against the background of intense isobutane dissociation, initiated by the vibrational pumping of i-C4H10 molecules in their resonant excitation by CO*2 molecules.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Vostrikov, A.A. and Fedyaeva, O.N., Development Concept of Environmentally Sound Power Industry Based on Fuels Oxidation in Supercritical Water, Proc. 9th Sci. Eng. Conf. on Supercritical Fluids: Fundamentals, Technologies, Innovations, Sochi, Russia, October 9–14, 2017, pp. 226–228.

  2. 2.

    Vostrikov, A.A., Dubov, D.Yu., Sokol, M.Ya., Shishkin, A.V., and Fedyaeva, O.N., Brown Coal Gasification in Combustion in SupercriticalWater, J. Eng. Therm., 2016, vol. 25, no. 1, pp. 55–66.

    Article  Google Scholar 

  3. 3.

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Ya., Kolobov, F.I., and Kolobov, V.I., Partial and CompleteMethane Oxidation in SupercriticalWater, J. Eng. Therm., 2016, vol. 25, no. 4, pp. 474–484.

    Article  Google Scholar 

  4. 4.

    Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Y., Fedorova, N.I., and Kashirtsev, V.A., Hydrothermolysis of Brown Coal in Cyclic Pressurization–Depressurization Mode, J. Supercrit. Fluids, 2012, vol. 62, pp. 155–164.

    Article  Google Scholar 

  5. 5.

    Vostrikov, A.A., Dubov, D.Yu., Sokol, M.Ya., and Fedyaeva, O.N., Partial and Complete Oxidation of Brown Coal in a Supercritical Water–Oxygen Fluid under Conditions of Counterflowing Reactant Streams, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 8, pp. 1256–1263.

    Article  Google Scholar 

  6. 6.

    Vostrikov, A.A., Fedyaeva, O.N., and Kolobov, V.I., Conversion of Tar in Supercritical Water/Oxygen Fluid with Soot Suppression, J. Eng. Therm., 2017, vol. 26, no. 1, pp. 1–9.

    Article  Google Scholar 

  7. 7.

    Prince, J.C. and Williams, F.A., Shot Chemical Kinetic Mechanisms for Low-Temperature Ignition of Propane and Ethane, Comb. Flame, 2012, vol. 159, pp. 2336–2344.

    Article  Google Scholar 

  8. 8.

    Merchant, S.S., Goldsmith, C.F., Vandeputte, A.G., Burke, M.P., Klippenstein, S.J., and Green, W.H., Understanding Low-Temperature First-Stage Ignition Delay: Propane, Comb. Flame, 2015, vol. 162, pp. 3658–3673.

    Article  Google Scholar 

  9. 9.

    Norman, F., Van den Schoor, F., and Verplaetsen, F., Auto-Ignition and Upper Limit of Rich Propane–Air Mixtures at Elevated Pressures, J. Hazard. Mater., 2006, vol. A137, pp. 666–671.

    Article  Google Scholar 

  10. 10.

    Healy, D., Donato, N.S., Aul, C.J., Petersen, E.L., Ziner, C.M., Bourque, G., and Curran, H.J., n-Butane: Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetics Simulations, Comb. Flame, 2010, vol. 157, pp. 1526–1539.

    Article  Google Scholar 

  11. 11.

    Barland, J.A. and Brench, A.V., The Combustion of Isobutane at Temperature between 280 and 365°C, Comb. Sci. Technol., 1977, vol. 15, pp. 243–262.

    Article  Google Scholar 

  12. 12.

    Healy, D., Donato, N.S., Aul, C.J., Petersen, E.L., Ziner, C.M., Bourque, G., and Curran, H.J., Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetics Simulations, Comb. Flame, 2010, vol. 157, pp. 1540–1551.

    Article  Google Scholar 

  13. 13.

    Basevich, V.Ya., Belyaev, A.A., Medvedev, S.N., Posvyanskii, V.S., and Frolov, S.M., Detailed Kinetic Mechanism of the Multistage Oxidation and Combustion of Isobutane, Russ. J. Phys. Chem. B, 2015, vol. 9, no. 2, pp. 268–274.

    Article  Google Scholar 

  14. 14.

    Hinshelwood, C.N., Chemical Kinetics in the Past Few Decades, Nobel Lecture, December 11, 1956; http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1956/hinshelwood-lecture.pdf.

    Google Scholar 

  15. 15.

    Semenov, N.N., Some Problem Relating to the Chain Reactions and to the Theory of Combustion, Nobel Lecture, December 11, 1956; http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1956/ semenov-lecture.pdf.

    Google Scholar 

  16. 16.

    Fiziko-khimicheskie svoistva organicheskikh soedinenii. Spravochnik (Physical and Chemical Properties of Organic Substances: Handbook), Bogomolnyi, A.M., Ed.,Moscow: Khimiya, 2008.

  17. 17.

    Borisov, A.A., Politenkova,G.G., Troshin, K.Ya., Kolbanovskii, Ya.A., and Bylera, I.V., On the Role of Butane Isomers Additives in Single-Stage Conversion of Associated Petroleum Gas in a Combustion Regime, Comb. Expl., 2013, vol. 6, no. 6, pp. 41–44.

    Google Scholar 

  18. 18.

    Gersen, S., Mokhov, A.V., Darmeveil, J.H., and Levinsky, H.B., Ignition Properties of n-Butane and Iso-Butane in a Rapid Compression Machine, Comb. Flame, 2010, vol. 157, pp. 240–245.

    Article  Google Scholar 

  19. 19.

    Townend, D.T.A. and Chamberlain, E.A.C., The Influence of Pressure on the Spontaneous Ignition of Inflammable Gas–Air Mixtures. IV. Methane–, Ethane–, and Propane–Air Mixtures, Proc. Royal Soc. London Series A,Math. Phys. Sci., 1936, vol. 154, no. 881, pp. 95–112.

    ADS  Article  Google Scholar 

  20. 20.

    Egerton, A., Moore, N.P.W., and Lyn, W.T., Ignition of Methane–Air Mixtures by Rapid Compression, Nature, 1951, vol. 167, no. 4240, pp. 191/192.

    ADS  Article  Google Scholar 

  21. 21.

    Bilera, I.V., Borisov, A.A., Borunova, A.B., Kolbanovskii, Yu.A., Korolev., Yu.M., Rossikhin, I.V., and Troshin, K.Ya., Manufacture of Synthesis Gas by the Methane Combustion Process: The Formation of Soot and Its Physicochemical Characteristics, Petrol. Chem., 2010, vol. 50, no. 5, pp. 338–343.

    Article  Google Scholar 

  22. 22.

    Ebina, W., Liao, C., Naito, H., and Yoshida, A., Effect of Water Mist on Minimum Ignition Energy of Propane/Air Mixture, Proc. Comb. Inst., 2017, vol. 36, pp. 3271–3278.

    Article  Google Scholar 

  23. 23.

    Zhang, W., Gou, X., and Chen, Z., Effect of Water Vapor Dilution on the Minimum Ignition Energy of Methane, n-Butane and n-Decane at Normal and Reduced Pressures, Fuel, 2017, vol. 187, pp. 111–116.

    Google Scholar 

  24. 24.

    Sabia, P., Lavedera, M.L., Guidicianni, P., Sorrentino, G., Ragguci, R., and de Joannon, M., CO2 and H2O Effect on Propane Auto-Ignition Delay Times under Mild Combustion Operative Conditions, Comb. Flame, 2015, vol. 162, pp. 533–543.

    Article  Google Scholar 

  25. 25.

    Lemmon, E.W., McLinden, M.O., and Freid, D.G., Thermophysical Properties of Fluid Systems, in NIST Chemistry WebBook, NIST Standard Reference Database, no. 69, Linstrom, P.J. and Mallard, W.G., Eds., Gaithersburg MD: National Institute of Standards and Technology, 2016, p. 20899; http://webbook.nist.gov/chemistry/fluid/.

    Google Scholar 

  26. 26.

    Rainwater, J.C., Ingham, H., and Lynch, J.J., Vapor–Liquid Equilibrium of Carbon Dioxide with Isobutane and n-Butane: Modified Leund–Griffiths Correlation and Data Evaluation, J. Res. Natl. Inst. Stand. Technol., 1990, vol. 95, pp. 702–717.

    Article  Google Scholar 

  27. 27.

    Perry, R.H., Green, D.W., and Maloney, J.O., Eds., Perry’s Chemical Engineers’ Handbook, 7th ed., New York: McGraw-Hill, 1997.

    Google Scholar 

  28. 28.

    Dautov, N.G., and Starik, A.M., Kinetics of Combustion of H2 + O2 Mixture with Participation of Vibrationally ExcitedMolecules, Comb., Expl. Shock Waves, 1994, vol. 30, no. 5, pp. 571–581.

    Article  Google Scholar 

  29. 29.

    Huestis, D.V., Vibrational Energy Transfer and Relaxation in O2 and H2O, J. Phys. Chem. A, 2006, vol. 110, 6638–6642.

    Article  Google Scholar 

  30. 30.

    Kondratiev, V.N. and Nikitin, E.M., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetic and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

    Google Scholar 

  31. 31.

    Montroll, E.W. and Shuler, K.E., Studies in Nonequilibrium Rate Process: I. The Relaxation of a System of Harmonic Oscillators, J. Chem. Phys., 1957, vol. 26, pp. 454–464.

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Ploeger, J.M., Bielenderg, P.A., Dinaro-Blanchard, J.L., Lauchance, R.P., Taylor, J.D., Green, W.H., and Tester, J.W., ModelingOxidation and HydrolysisReactions in SupercriticalWater—Free Radical Elementary Reactions Networks and Their Applications, Comb. Sci. Technol., 2006, vol. 178, pp. 363–398.

    Google Scholar 

  33. 33.

    Computational Chemistry Comparison and Benchmark Data Base, Release 18, Standard Reference Database 101, National Institute of Standards and Technology, 2016, http://cccbdb.nist.gov/expvibs2.asp.

  34. 34.

    Steacie, E.W.R. and Piddington, J.E., The Kinetics of the Decomposition Reactions for Lower Paraffins, II: Isobutane, Can. J. Res., 1938, vol. B16, no. 8, pp. 260–272.

    Google Scholar 

  35. 35.

    Smith, B.R.J., Loganathan, M., and Shantha, M.S., A Review of the Water–Gas Shift Reaction Kinetics, Int. J. Chem. Reactor Eng., 2010, vol. 8, rev. R4, pp. 1–32.

    Article  Google Scholar 

  36. 36.

    Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhil’tsova, I.V., Kolbanovskii, Y.I., Smirnov, N.V., and Tereza, A.M., Unified Kinetic Model of Soot Formation in the Pyrolysis and Oxidation of Aliphatic and Aromatic Hydrocarbons in ShockWaves, Kin. Catal., 2016, vol. 57, no. 5, pp. 557–572.

    Article  Google Scholar 

  37. 37.

    Schenk, M., Hansen, N., Vieker, H., Beyer, A., Gölzhäuser, A., and Kohse-Höinghaus, K., PAH Formation and Soot Morphology in Flames of C4 Fuels, Proc. Comb. Inst., 2015, vol. 35, pp. 1761–1769.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Vostrikov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V. et al. Features of low-temperature oxidation of isobutane in water vapor and carbon dioxide with increased density of reagents. J. Engin. Thermophys. 26, 466–475 (2017). https://doi.org/10.1134/S1810232817040038

Download citation