Skip to main content
Log in

Experimental and numerical study of heat transfer enhancement in a turbulent bubbly flow in a sudden pipe expansion

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Results of an experimental and numerical simulation of heat transfer in an upward bubbly flowin a sudden pipe expansion are presented. The experimental study of the heat transfer has been performed using infrared thermography. The measurements of the bubble size before the pipe expansion area were carried out by the shadow photographymethod. The numerical simulation of the bubbly flow structure in the sudden pipe expansion has been performed using the Eulerian approach in the presence of heat transfer between the two-phase flow and the wall surface. The model uses the system of Reynolds-averaged Navier–Stokes equations in an axisymmetric approximation, written with consideration of the back effect of bubbles on the averaged and pulsation characteristics of the flow. It has been experimentally and numerically shown that addition of air bubbles causes a significant (up to 3-fold) increase in the heat transfer intensity, these effects growing with bubble concentration. The largest rise in the heat transfer has been revealed in the region of flow relaxation downstream of the flow attachment point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton, J.K. and Johnston, J.P., Review of Research on Subsonic Turbulent Flow Reattachment, AIAA J., 1981, vol. 19, pp. 1093–1100.

    Article  ADS  Google Scholar 

  2. Ota, T., A Survey of Heat Transfer in Separated and Reattached Flows, Appl. Mech. Rev., 2000, vol. 53, pp. 219–235.

    Article  ADS  Google Scholar 

  3. Rinne, A. and Loth, R., Development of Local Two-Phase Flow Parameters for Vertical Bubbly Flow in a Pipe with Sudden Expansion, Exp. Therm. Fluid Sci., 1996, vol. 13, pp. 152–166.

    Article  Google Scholar 

  4. Aloui, F., Doubliez, L., Legarand, J., and Souhar, M., Bubbly Flow in an Axisymmetric Sudden Expansion: Pressure Drop, Void Fraction, Wall Shear Stress, BubbleVelocities and Sizes, Exp. Therm. Fluid Sci., 1999, vol. 19, pp. 118–130.

    Article  Google Scholar 

  5. Ahmed, W.H., Ching, C.Y., and Shoukri, M., Development of Two-Phase Flow Downstream of a Horizontal Sudden Expansion, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 194–206.

    Article  Google Scholar 

  6. Voutsinas, A., Shakouchi, T., Tsujimoto, K., and Ando, T., Investigation of Bubble Size Effect on Vertical Upward Bubbly Two-Phase Pipe Flow Consisted with an Abrupt Expansion, J. Fluid Sci. Techn., 2009, vol. 4, pp. 442–453.

    Article  ADS  Google Scholar 

  7. Krepper, E., Beyer, M., Frank, T., Lucas, D., and Prasser, H.-M., CFD Modeling of Polydispersed Bubbly Two-Phase Flow around an Obstacle, Nucl. Eng. Des., 2009, vol. 239, pp. 2372–2381.

    Article  Google Scholar 

  8. Pakhomov, M.A. and Terekhov, V.I., Modeling of the Flow Patterns and Heat Transfer in a Turbulent Bubbly Polydispersed Flow Downstream of a Sudden Pipe Expansion, Int. J. Heat Mass Transfer, 2016, vol. 101, pp. 1251–1262.

    Article  Google Scholar 

  9. Papoulias, D., Splawski, A., Vikhanski, A., and Lo, S., EulerianMultiphase Predictions of Turbulent Bubbly Flow in a Step-Channel Expansion, Proc. 9th Int. Conf. on Multiphase Flow ICMF-2016, USB Flash Drive, pap. 299, p.6.

  10. Krepper, E., Lucas, D., Frank, T., Prasser, H.-M., and Zwart, P.J., The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows, Nucl. Eng. Des., 2008, vol. 238, pp. 1690–1702.

    Article  Google Scholar 

  11. Zaichik, L.I., Skibin, A.P., and Solov’ev, S.L., Simulation of the Distribution of Bubbles in a Turbulent Liquid Using a Diffusion-InertiaModel, High Temp., 2004, vol. 42, no. 1, pp. 111–118.

    Article  Google Scholar 

  12. Zaichik, L.I. and Alipchenkov, V.M., Modeling of the Motion of Light-Weight Particles and Bubbles in Turbulent Flows, Fluid Dyn., 2010, vol. 45, no. 4, pp. 574–590.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bel Fdhila, R., Analyse Experimental etModelisation d’un Ecoulement Vertical a Bulles Dans un Elargissement Brusque, Ph.D. Thesis, INP Toulouse, 1991.

    Google Scholar 

  14. Pakhomov, M.A. and Terekhov, V.I., Simulation of the Turbulent Structure of a Flow and Heat Transfer in an Ascending Polydisperse Bubble Flow, Tech. Phys., 2015, vol. 60, no. 9, pp. 1268–1276.

    Article  Google Scholar 

  15. Alekseenko, S.V., Dulin, V.M., Markovich, D.M., and Pervunin, K.S., Experimental Investigation of TurbulenceModification in Bubbly Axisymmetric Jets, J. Eng. Therm., 2015, vol. 24, no. 2, pp. 101–112.

    Article  Google Scholar 

  16. Nigmatulin, R.I., Spatial Averaging in the Mechanism of Heterogeneous and Dispersed Systems, Int. J. Multiphase Flow, 1979, vol. 5, no. 5, pp. 353–385.

    Article  MATH  Google Scholar 

  17. Drew, D.A. and Lahey, R.T., Jr., Application of General Constitutive Principles to the Derivation of Multidimensional Two-Phase Flow Equations, Int. J. Multiphase Flow, 1979, vol. 5, no. 4, pp. 243–264.

    Article  MATH  Google Scholar 

  18. Zaichik, L.I., A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows, Phys. Fluids, 1999, vol. 11, no. 6, pp. 1521–1534.

    Article  ADS  MATH  Google Scholar 

  19. Derevich, I.V., Statistical Modeling of Mass Transfer in Turbulent Two-Phase Dispersed Flows. 1. Model Development, Int. J. HeatMass Transfer, 2000, vol. 43, no. 19, pp. 3709–3723.

    Article  MATH  Google Scholar 

  20. Nigmatulin, R.I., Dynamics ofMultiphase Media, vol. 1, CRC Press, 1990, p.532.

    Google Scholar 

  21. Lopez de Bertodano, M., Lee, S.J., Lahey, R.T., Jr., and Drew, D.A., The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model, ASME J. Fluids Eng., 1990, vol. 112, no. 1, pp. 107–113.

    Article  Google Scholar 

  22. Politano, M., Carrica, P., and Converti, J., A Model for Turbulent Polydisperse Two-Phase Flow in Vertical Channel, Int. J. Multiphase Flow, 2003, vol. 29, no. 7, pp. 1153–1182.

    Article  MATH  Google Scholar 

  23. Gould, R.D., Stevenson, W.H., and Thompson, H.D., Investigation of Turbulent Transport in an Axisymmetric Sudden Expansion, AIAA J., 1990, vol. 28, no. 2, pp. 276–283.

    Article  ADS  Google Scholar 

  24. Fadai-Ghotbi, A., Manceau, R., and Boree, J., Revisiting URANS Computations of the Backward-Facing Step Flow Using SecondMoment Closures. Influence of the Numerics, Flow, Turb. Combust., 2008, vol. 81, no. 3, pp. 395–410.

    Article  MATH  Google Scholar 

  25. Loth, E., Quasi-Steady Shape and Drag of Deformable Bubbles and Drops, Int. J. Multiphase Flow, 2008, vol. 34, no. 6, pp. 523–546.

    Article  Google Scholar 

  26. Wallis, G.B., The Terminal Speed of Single Drops in an Infinite Medium, Int. J. Multiphase Flow, 1974, vol. 1, no. 4, pp. 491–511.

    Article  Google Scholar 

  27. Drew, D.A. and Lahey R.T., Jr., The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow, Int. J. Multiphase Flow, 1987, vol. 13, no. 1, pp. 113–121.

    Article  MATH  Google Scholar 

  28. Tomiyma, A., Tamai, H., Zun, I., and Hosokawa, S., TransverseMigration of Single Bubbles in Simple Shear Flows, Chem. Eng. Sci., 2002, vol. 57, no. 11, pp. 1849–1958.

    Article  Google Scholar 

  29. Antal, S.P., Lahey, R.T., Jr., and Flaherty, J.E., Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. Multiphase Flow, 1991, vol. 17, no. 5, pp. 635–652.

    Article  MATH  Google Scholar 

  30. Tomiyama, A., Sou, I., Zun, I., Kanami, N., and Sakaguchi, T., Effects of Eotvos Number and Dimensionless Liquid Volumetric Flux on LateralMotion of a Bubble in a Laminar Duct Flow, Adv.Multiphase Flow, 1995, no. 1, pp. 3–15.

    Google Scholar 

  31. Lehr, F. and Mewes, D., A Transport Equation for the Interfacial Area Density Applied to Bubble Columns, Chem. Eng. Sci., 2001, vol. 56, no. 3, pp. 1159–1166.

    Article  Google Scholar 

  32. Nguyen, V.T., Song, C.-H., Bae, B.U., and Euh, D.J., Modeling of Bubble Coalescence and Break-up Considering Turbulent Suppression Phenomena in Bubbly Two-Phase Flow, Int. J.Multiphase Flow, 2013, vol. 54, no. 1, pp. 31–42.

    Article  Google Scholar 

  33. Yao, W. and Morel, C., Volumetric Interfacial Area Prediction in Upward Bubbly Two-Phase Flow, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 2, pp. 307–328.

    Article  MATH  Google Scholar 

  34. Hanjalic, K. and Jakirlic, S., Contribution Towards the Second-Moment Closure Modeling of Separating Turbulent Flows, Comput. Fluids, 1998, vol. 27, no. 2, pp. 137–156.

    Article  MATH  Google Scholar 

  35. Vorob’ev, M.A., Kashinskii, O.N., Lobanov, P.D., and Chinak, A.V., Formation of the Finely Dispersed Gas Phase in Upward and Downward Fluid Flows, Fluid Dynamics, 2012, vol. 47, no. 4, pp. 494–500.

    Article  ADS  MATH  Google Scholar 

  36. Nakoryakov, V.E., Kashinsky, O.N., Burdukov, A.P., and Odnoral, V.P., Local Characteristics of Upward Gas–Liquid Flows, Int. J. Multiphase Flow, 1981, vol. 7, no. 1, pp. 63–81.

    Article  Google Scholar 

  37. Kashinckii, O.N., Timkin, L.S., Gorelik, R.S., and Lobanov, P.D., Experimental Study of the Friction Stress and True Gas Content in Upward Bubbly Flow in a Vertical Tube, J. Eng. Phys. Thermophys., 2006, vol. 79, no. 6, pp. 1117–1129.

    Article  Google Scholar 

  38. Timkin, L.S. and Gorelik, R.S., Specificity of Laminar-Turbulent Transition in Upward Monodispersed Microbubbly Flow, Tech. Phys. Lett., 2010, vol. 36, no. 6, pp. 493–495.

    Article  ADS  Google Scholar 

  39. Hishida, K., Nagayasu, T., and Maeda, M., Augmentation of Convective Heat Transfer by an Effective Utilization of Droplet Inertia, Int. J. Heat Mass Transfer, 1995, vol. 38, no. 10, pp. 1773–1785.

    Article  Google Scholar 

  40. Pakhomov, M.A. and Terekhov, V.I., Second Moment Closure Modeling of Flow, Turbulence and Heat Transfer in Droplet-Laden Mist Flow in a Vertical Pipe with Sudden Expansion, Int. J. HeatMass Transfer, 2013, vol. 66, no. 1, pp. 210–222.

    Article  Google Scholar 

  41. Baughn, J.W., Hoffman, M.A., Takahasi, R.K., and Launder, B.E., Local Heat Transfer Downstream of an Abrupt Expansion in a Circular Channel with Constant Wall Heat Flux, ASME J. Heat Transfer, 1984, vol. 106, no. 4, pp. 789–796.

    Article  Google Scholar 

  42. Terekhov, V.I. and Bogatko, T.V., Aerodynamics and Heat Transfer in a Separated Flow in an Axisymmetric Diffuser with Sudden Expansion, J. Appl.Mech. Techn. Phys., 2015, vol. 56, no. 3, pp. 471–478.

    Article  ADS  Google Scholar 

  43. Kashinsky, O.N., Randin, V.V., and Chinak, A.V., Heat Transfer and Shear Stress in a Gas–Liquid Flow in an Inclined Flat Channel, JET, 2014, vol. 23, no. 1, pp. 471–478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Lobanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, P.D., Pakhomov, M.A. Experimental and numerical study of heat transfer enhancement in a turbulent bubbly flow in a sudden pipe expansion. J. Engin. Thermophys. 26, 377–390 (2017). https://doi.org/10.1134/S1810232817030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817030080

Navigation