Skip to main content
Log in

Wall shear stress from single almost spherical and long Taylor bubbles in laminar upward tube flow

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

An experimental electrodiffusional technique with eight double probes is used to detect perturbation of the wall shear stress by a single bubble in laminar upward tube flow. Small almost spherical and long Taylor bubbles are tested. The wall shear stress perturbations by bubbles have a complex structure. It is possible to define three components of perturbation caused by a small bubble. The perturbation by Taylor bubble contains only two components due to the main flow symmetry around the bubble. An unexpectedly long shear stress pulsations zone is registered behind the Taylor bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herringe, R.A. and Davis, M.R., Structural Developments of Gas–Liquid Mixture Flows, J. Fluid Mech., 1976, vol. 73, pp. 97–123.

    Article  ADS  Google Scholar 

  2. Sato, Y., Sadatomi, M., and Sekoguchi, K., Momentum and Heat Transfer in Two-Phase Bubbly Flow, Int. J.Multiph. Flow, 1981, vol. 7, pp. 167–177.

    Article  MATH  Google Scholar 

  3. Marie, J.L., Investigation of Two-PhaseBubbly Flows Using Laser-Doppler Anemometry, PCH, 1983, vol. 4, pp. 103–118.

    Google Scholar 

  4. Wang, S.K., Lee, S.J., Jones, O.C., and Lahey, R.T., 3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows, Int. J. Multiph. Flow, 1987, vol. 13, pp. 327–343.

    Article  Google Scholar 

  5. Souhar, M., Some Turbulent Quantities and Energy Spectra in the Wall Region of Bubble Flows, Phys. Fluids A, 1989, vol. 1, pp. 1558–1565.

    Article  ADS  Google Scholar 

  6. Lance, M. and Bataille, J., Turbulence in the Liquid Phase of a Uniform Bubbly Air–Water Flow, J. Fluid Mech., 1991, vol. 222, pp. 95–118.

    Article  ADS  Google Scholar 

  7. Dumitrescu, D.T., Strömung an einer Luftblase imsenkrechten Rohr, Z. Angew.Math.Mech., 1943, vol. 23, pp. 139–149.

    Article  MathSciNet  Google Scholar 

  8. Moissis, R. and Griffith, P., Entrance Effects in a Two-Phase Slug Flow, J. Heat Transfer, 1962, vol. 84, pp. 29–39.

    Article  Google Scholar 

  9. Taitel, Y., Bornea, D., and Dukler, A.E., Modeling Flow Pattern Transitions for Steady Upward Gas–Liquid Flow in Vertical Tubes, AIChE J., 1980, vol. 26, pp. 345–354.

    Article  Google Scholar 

  10. Nakoryakov, V.E., Kashinsky, O.N., Petukhov, A.V., and Gorelik, R.S., Study of Local Hydrodynamic Characteristics of Upward Slug Flow, Exp. Fluids, 1989, vol. 28, pp. 560–566.

    Article  Google Scholar 

  11. Nogueira, S., Sousa, R.G., Pinto, A.M.F.R., Riethmuller, M.L., and Campos, J.B.L.M., Simultaneous PIV and Pulsed Shadow Technique in Slug Flow: A Solution for Optical Problems, Exp. Fluids, 2003, vol. 35, pp. 598–609.

    Article  Google Scholar 

  12. Shemer, L., Gulitski, A., and Barnea, D., On the Turbulent Structure in the Wake of Taylor Bubbles Rising in Vertical Pipes, Phys. Fluids, 2007, vol. 19, pp. 035108 (1–13).

    Article  ADS  MATH  Google Scholar 

  13. Nakoryakov, V.E., Timkin, L.S., and Gorelik, R.S., Experimental Study of the Taylor Bubbles Shear Stress in an Upward Flow in a Vertical Tube, Thermophys. Aeromech., 2011, vol. 18, pp. 281–292.

    Article  ADS  Google Scholar 

  14. Tihon, J., Penkavova, V., and Vejrazka, J., Wall Shear Stress Induced by a Large Bubble Rising in an Inclined Rectangular Channel, Int. J. Multiph. Flow, 2014, vol. 67, pp. 76–87.

    Article  Google Scholar 

  15. Morgado, A.O., Miranda, J.M., Araújo, J.D.P., and Campos, J.B.L.M., Review on Vertical Gas–Liquid Slug Flow, Int. J. Multiph. Flow, 2016, vol. 85, pp. 348–368.

    Article  MathSciNet  Google Scholar 

  16. Ortiz-Villafuerte, J., Schmidl, W.D., and Hassan, Y.A., Three-Dimensional PTV Study of the Surrounding Flow andWake of Bubble Rising in a Stagnant Liquid, Exp. Fluids, 2000, vol. 29, pp. 202–210.

    Article  Google Scholar 

  17. Hassan, Y.A., Ortiz-Villafuerte, J., and Schmidl, W.D., Three-DimensionalMeasurements of Single Bubble Dynamics in a Small Diameter Pipe Using Stereoscopic Particle Image Velocimetry, Int. J. Multiph. Flow, 2001, vol. 27, pp. 817–842.

    Article  MATH  Google Scholar 

  18. Hetstroni, G., Li, C.F., Mosyak, A., and Tiselj, I., Heat Transfer and Thermal Pattern around a Sphere in a Turbulent Boundary Layer, Int. J. Multiph. Flow, 2001, vol. 27, pp. 1127–1150.

    Article  MATH  Google Scholar 

  19. Guo, Z., Wittwer, P., and Zhou, Y., Leading Order Asymptotic of Stationary Navier–Stokes Flows in the Presence of a Wall, Math. Mod. Meth.Appl. S., 2012, vol. 22, pp. 1150018 (1-26).

    Article  MathSciNet  MATH  Google Scholar 

  20. Timkin, L.S. and Kashinsky, O.N., FluctuatingWall Shear Stress in Upward Pseudoturbulent Bubbly Flow, in Proc. Second Int. Symp. on Two-Phase Flow Modeling and Experimentation, Celata, G.P., Marco, P.D., and Shah, R.K., Eds., 1999, Rome, Italy, vol. 2, pp. 1117–1122.

    Google Scholar 

  21. Timkin, L.S., Gorelik, R.S., and Lobanov, P.D., Rise of a Single Bubble in Ascending Laminar Flow: Slip Velocity andWall Friction, J. Eng. Phys. Thermophys., 2005, vol. 78, pp. 762–768.

    Article  Google Scholar 

  22. Wallis, G.B., The Terminal Speed of Single Drops or Bubbles in an Infinite Medium, Int. J. Multiph. Flow, 1974, vol. 1, pp. 491–511.

    Article  Google Scholar 

  23. Nakoryakov, V.E., Burdukov, A.P., Kashinsky, O.N., and Geshev, P.I., Electrodiffusional Method for Studying Local Structure of Turbulent Flows, Novosibirsk: Institute of Thermophysics, 1986, p. 247.

    Google Scholar 

  24. Py, B., Improvement of Frequency Response of the Electrochemical Wall Shear Stress Meter, Exp. Fluids, 1990, vol. 8, pp. 281–285.

    Article  Google Scholar 

  25. Kashinskii, O.N., Timkin, L.S., Gorelik, R.S., and Lobanov, P.D., Experimental Study of the Friction Stress and True Gas Content in Upward Bubbly Flow in a Vertical Tube, J. Eng. Phys. Thermophys., 2006, vol. 79, pp. 1117–1129.

    Article  Google Scholar 

  26. Descamps, M.N., Oliemans, R.V.A., Ooms, G., and Mude, R.F., Air–Water Flow in a Vertical Pipe: Experimental Study of Air Bubbles in the Vicinity of theWall, Exp. Fluids, 2008, vol. 45, pp. 357–370.

    Article  Google Scholar 

  27. Pinto, A.M.F.R. and Campos, J.B.L.M., Coalescence of Two Gas Slugs in a Vertical Column of Liquid, Chem. Eng. Sci., 1996, vol. 51, pp. 45–54.

    Article  Google Scholar 

  28. Pinto, A.M.F.R., Pinheiro, M.N.C., and Campos, J.B.L.M., On the Interaction of Taylor Bubble Rising in Two-Phase Co-current Slug Flow in Vertical Columns: Turbulent Wakes, Exp. Fluids, 2001, vol. 31, pp. 643–652.

    Article  Google Scholar 

  29. Dukler, A.E., Maron, D.M., and Brauner, M., A Physical Model for Predicting the Minimal Stable Slug Length, Chem. Eng. Sci., 1985, vol. 40, pp. 1379–1385.

    Article  Google Scholar 

  30. Talvy, C.A., Shemer, L., and Barnea, D., On the Interaction between Two Consecutive Elongated Bubbles in a Vertical Pipe, Int. J. Multiph. Flow, 2000, vol. 26, pp. 1905–1923.

    Article  MATH  Google Scholar 

  31. Van Hout, R., Gulitski, A., Barnea, D., and Shemer, L., Experimental Investigation of the Velocity Field Induced by a Taylor Bubble Rising in a Stagnant Water, Int. J. Multiph. Flow, 2002, vol. 28, pp. 579–596.

    Article  MATH  Google Scholar 

  32. Araujo, J.D.P., Miranda, J.M., Pinto, A.M.F.R., and Campos, J.B.L.M., Wide-Ranging Survey on the Laminar Flow of Individual Taylor Bubbles Rising through Stagnant Newtonian Liquids, Int. J. Multiph. Flow, 2012, vol. 43, pp. 131–148.

    Article  Google Scholar 

  33. Sreenivasan, R.K., Laminarescent, Relaminarizing and Retransitional Flows, Acta Mech., 1982, vol. 44, pp. 1–48.

    Article  MATH  Google Scholar 

  34. Hof, B., Westerweel, J., Schneader, T.M., and Eckhardt, B., Finite Lifetime of Turbulence in Shear Flows, Nature, 2006, vol. 443, pp. 59–62.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Timkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakoryakov, V.E., Timkin, L.S. & Gorelik, R.S. Wall shear stress from single almost spherical and long Taylor bubbles in laminar upward tube flow. J. Engin. Thermophys. 26, 303–313 (2017). https://doi.org/10.1134/S1810232817030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817030018

Navigation