Skip to main content

Numerical modeling of the final stage of axisymmetric turbulent wake decay


Using the modified e ~ ε turbulence model the numerical simulation of the final stage of viscose stage of turbulent wake decay behind axisymmetric bodies was performed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ginevskii, A.S., Teoriya turbulentnykh strui i sledov (Theory of Turbulent Jets and Wakes), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  2. 2.

    Rodi, W., The Prediction of Free Turbulent Boundary Layers by Use of Two-Equation Model of Turbulence, Ph.D. Thesis, University of London, 1972.

    Google Scholar 

  3. 3.

    Gorodtsov, V.A., Similarity and Weak Closing Relations for Symmetric Free Turbulence, Fluid Dyn., 1979, vol. 14, iss. 1, pp. 31–37.

    ADS  Article  MATH  Google Scholar 

  4. 4.

    Hassid, S., Collapse of TurbulentWakes in Stable Stratified Media, J. Hydronaut., 1980, vol. 14, pp. 25–32.

    ADS  Article  Google Scholar 

  5. 5.

    Luchko, N.N., The Influence of the Error in Determining Excess Momentum on the Evolution of an Axisymmetric Turbulent Wake, in Struktura turbulentnykh techenii (The Structure of Turbulent Flows), Tr. ITMO ANBSSR, Minsk, 1982.

    Google Scholar 

  6. 6.

    Kolovandin, B.A. and Luchko, N.N., Influence of External Turbulence on the Velocity Field in the Wake behind an Ellipsoid of Revolution, J. Eng. Phys., 1985, vol. 48, iss. 4, pp. 390–396.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kovalev, I.I., Kolovandin, B.A., and Luchko, N.N., Final Stage in Turbulent Velocity Field Degeneration in a Coflow, J. Eng. Phys., 1985, vol. 49, iss. 2, pp. 903–906.

    Article  Google Scholar 

  8. 8.

    Aleksenko, N.V. and Kostomakha, V.A., Experimental Study of an Axisymmetric Nonimpulsive Turbulent Jet, J. Appl. Mech. Tech. Phys., 1987, vol. 28, no. 1, pp. 60–64.

    ADS  Article  Google Scholar 

  9. 9.

    Piquet, J., Turbulent Flows.Models and Physics, Berlin: Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  10. 10.

    Moshkin, N.P., Fomina, A.V., and Chernykh, G.G., Numerical Modeling of Dynamics of Turbulent Wake behind Towed Body in the Linearly Stratified Medium, Mat. Model., 2007, vol. 19, no. 1, pp. 29–56.

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Voropaeva, O.F., A Hierarchy of Second- and Third-Order Turbulence Models for Momentumless Wakes behind Axisymmetric Bodies, Mat. Model., 2007, vol. 19, no. 3, pp. 29–51.

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Chernykh, G.G., Moshkin, N.P., and Fomina, A.V., Dynamics of Turbulent Wake with Small Excess Momentum in Stratified Media, Comm.Nonlin. Sci. Numer. Simul., 2009, vol. 14, no. 4, pp. 1307–1323.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Novikov, B.G., Effect of Small Total Pulse on Development of a Wake behind the Self-propelled Bodies, Thermophys. Aeromech., 2009, no. 4, pp. 597–623.

    Google Scholar 

  14. 14.

    Lewis, B.J., Cimbala, J.M., and Wouden, A.M., Analysis and Optimization of Guide Vane Jets to Decrease the Unsteady Load on Mixed Flow Hydroturbine Runner Blades, Proc. Seventh Int. Conf. on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9–13, 2012, ICCFD7-1701.

    Google Scholar 

  15. 15.

    Redford, J.A., Castro, I.P., and Coleman, G.N., On the Universality of Turbulent Axisymmetric Wakes, J. Fluid Mech., 2012, vol. 710, pp. 419–452.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Chernykh, G.G. and Demenkov, A.G., Numerical Simulation of TurbulentWakes with Variable Total Excess Momentum, J. Eng. Therm., 2013, vol. 22, no. 2, pp. 143–156.

    Article  Google Scholar 

  17. 17.

    Kaptsov, O.V., Fomina, A.V., Chernykh, G.G., and Schmidt, A.V., Self-Similar Decay of theMomentumless TurbulentWake in a Passive Stratified Medium, Mat. Model., 2015, vol. 27, no. 1, pp. 84–98.

    MATH  Google Scholar 

  18. 18.

    Dmitrenko, Y.M., Kovalev, I.I., Luchko, N.N., and Cherepanov, P.Y., Plane TurbulentWake with Zero Excess Momentum, J. Eng. Phys., 1987, vol. 52, iss. 5, pp. 536–542.

    Article  Google Scholar 

  19. 19.

    Sennitskii, V.L., Example of Flow of an Axisymmetric Liquid Stream over a Self-propelled Body, J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 4, pp. 526–530.

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Pukhnachev, V.V., Asymptotics of a Velocity Field at Considerable Distances from a Self-propelled Body, J. Appl. Mech. Tech. Phys., 1989, vol. 30, no. 2, pp. 215–222.

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Phillips, O.M., The Final Period of Decay of Non-homogeneous Turbulence, Math. Proc. Cambridge Philos. Soc., 1956, vol. 52, iss. 1, pp. 135–151.

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical FluidMechanics:Mechanics of Turbulence), St. Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

  23. 23.

    Demenkov, A.G., Fomina, A.V., and Chernykh, G.G., Asymptotic Decay of the Axisymmetric Turbulent Wakes with Zero and Small Nonzero Total Excess Momentum, Euras. Union Sci., 2015, nos. 10–16(19), pp. 20–24.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. G. Demenkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demenkov, A.G., Fomina, A.V. & Chernykh, G.G. Numerical modeling of the final stage of axisymmetric turbulent wake decay. J. Engin. Thermophys. 26, 107–112 (2017).

Download citation