Skip to main content

Interval-stochastic thermal processes in electronic systems: Analysis and modeling

Abstract

Mathematical and computermodeling of thermal processes, applied presently in thermal design of electronic systems, is based on the assumption that the factors determining the thermal processes are completely known and uniquely determined, that is, they are deterministic.Meanwhile, practice shows that the determining factors are of indeterminate interval-stochastic character. Moreover, thermal processes in electronic systems are stochastic and nonlinearly depend on both the stochastic determining factors and on the temperatures of electronics elements and environment. At present, the literature does not present methods of mathematical modeling of nonstationary, stochastic, nonlinear, interval-stochastic thermal processes in electronic systems to model thermal processes, which satisfy all the above-listed requirements to modeling adequacy. The present paper develops a method of mathematical and computer modeling of the nonstationary intervalstochastic nonlinear thermal processes in electronic systems. The method is based on obtaining equations describing the dynamics of time variation of statistical measures (expectations, variances, covariances) of temperature of electronic system elements with given statistical measures of the initial interval-stochastic determining factors.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adomian, G., Stochastic Systems, New York: Academic Press, 1983.

    MATH  Google Scholar 

  2. 2.

    Dobronets, B.S and Zlobin, V.S., Numerical Modeling of Temperature Fields with Interval Uncertainties, Sib. Zh. Ind. Math., 2004, vol. 7, no. 3(19), pp. 95–101.

    MATH  Google Scholar 

  3. 3.

    Dulnev, G.N., Teplovye rezhimy elektronnoi apparatury (Thermal Conditions of Electronics), Leningrad: Energiya, 1971.

  4. 4.

    Gyarmati, I., Non-Equilibrium Thermodynamics. Field Theory and Variational Principles, New York: Springer-Verlag, 1970.

    Book  Google Scholar 

  5. 5.

    Konstruktorsko-tekhnologicheskoe proektirovanie elektronnoi apparatury (Technological Design of Electronics), Shakhnov, V.A., Ed., Moscow: Bauman MGTU, 2005.

  6. 6.

    Madera, A.G., Modelirovanie teploobmena v tekhnicheskikh sistemakh (Modeling of Heat Transfer in Engineering Systems), Moscow: Melnikov NF, 2005.

    Google Scholar 

  7. 7.

    Madera, A.G. and Kandalov, P.I., Modeling of Temperature Fields of Technical Systems under Interval Uncertainty, Tepl. Prots. Tekhn., 2014, vol. 6, pp. 225–229.

    Google Scholar 

  8. 8.

    Madera, A.G. and Kandalov, P.I., Analysis of Interval-Stochastic Temperature Fields of Technical Systems, Prog. Prod. Sist., 2014, no. 4, pp. 41–45.

    Google Scholar 

  9. 9.

    Madera, A.G. and Kandalov, P.I., Computer Modeling of Temperature Fields of Technical Systems under Interval-Stochastic Uncertainty of Parameters, Prikl. Inf., 2015, vol. 10, no. 1(55), pp. 106–113.

    Google Scholar 

  10. 10.

    Pugachev, V.S., Teoriya sluchainykh funktsii (Theory of Random Functions), Moscow: Nauka, 1962.

    Google Scholar 

  11. 11.

    Chekanov, A.N., Raschety i obespechenie nadezhnosti elektronnoi apparatury (Calculations and Reliability Control of Electronic Equipment), Moscow: KNORUS, 2012.

    Google Scholar 

  12. 12.

    Campo, A. and Yishimura, T., Random Heat Transfer in Flat Channels with Timewise Variation of Ambient Temperature, Int. J. HeatMass Transfer, 1979, vol. 22, pp. 5–12.

    Article  MATH  Google Scholar 

  13. 13.

    Chantasiriwan, S., Error and Variance of Solution to the Stochastic Heat Conduction Problem by Multiguadric Collocation Method, Int. Comm. HeatMass Trans., 2006, no. 33, pp. 342–349.

    Article  Google Scholar 

  14. 14.

    Ellison, G.N., Thermal Computations for Electronics, Conductive, Radiative, and Convective Air Cooling, New York: CRC Press, 2011.

    Google Scholar 

  15. 15.

    Emery, A.F., Solving Stochastic Heat Transfer Problems, Eng. An. Bound. Elem., 2004, no. 8, pp. 279–291.

    Article  MATH  Google Scholar 

  16. 16.

    Georgiadis, J.G., On the Approximate Solution on Non-deterministic Heat and Mass Transport Problems, Int. J. HeatMass Transfer, 1991, vol. 33, no. 8, pp. 2099–2105.

    Google Scholar 

  17. 17.

    Keller, C.J. and Antonetti, V.W., Statistical Thermal Design for Computer Electronics, El. Pack. Prod., 1979, vol. 19, no. 3, pp. 55–62.

    Google Scholar 

  18. 18.

    Madera, A.G., Modeling of Stochastic Heat Transfer in a Solid, Appl. Math. Model., 1993, vol. 17, no. 12, pp. 664–668.

    Article  MATH  Google Scholar 

  19. 19.

    Madera, A.G., Simulation of Stochastic Heat Conduction Processes, Int. J. Heat Mass Transfer, 1994, vol. 37, no. 16, pp. 2571–2577.

    Article  MATH  Google Scholar 

  20. 20.

    Madera, A.G., Heat Transfer from an Extended Surface at a Stochastic Heat-Transfer Coefficient and Stochastic Environmental Temperature, Int. J. Eng. Sci., 1996, vol. 34, no. 9, pp. 1093–1099.

    Article  MATH  Google Scholar 

  21. 21.

    Madera, A.G. and Sotnikov, A.N., Method for Analyzing Stochastic Heat Transfer in a Fluid Flow, Appl. Math.Model., 1996, vol. 20, no. 8, pp. 588–592.

    Article  MATH  Google Scholar 

  22. 22.

    Nakamura, T. and Fujii, K., Probabilistic Transient Thermal Analysis of an Atmospheric Reentry Vehicle Structure, Aero Sci., Tech., 2006, no. 10, pp. 346–354.

    Article  Google Scholar 

  23. 23.

    Padovan, J. and Guo, Y.H., Solution of Non-deterministic Finite Element and Finite Difference Heat conduction Simulations, Num. Heat Trans. A, 1989, vol. 15, pp. 383–398.

    Article  MATH  Google Scholar 

  24. 24.

    Saleh, M.M., El-Kalla, I.L., and Ehab, M.M, Stochastic Finite Element Technique for Stochastic One-Dimension Time-DependentDifferential Equations withRandomCoefficients, Dif. Eq.Nonlin. Mech., 2007, art. ID 48527.

  25. 25.

    Samuels, J.C., Heat Conduction in Solids with Random External Temperatures and/or Random Internal Heat Generation, Int. J. Heat Mass Transfer, 1966, vol. 9, pp. 301–314.

    Article  MATH  Google Scholar 

  26. 26.

    Scheerlinck, N., Verboven, P., Stigter, J.D., Baerdemaeker, J.D., Impe, J.F.V., and Nicolai, B.M., Stochastic Finite-Element Analysis of CoupledHeat and Mass Transfer Problems with Random Field Parameters, Num. Heat Transfer B, 2000, no. 37, pp. 309–330.

    ADS  Article  Google Scholar 

  27. 27.

    Srivastava, K., Modeling the Variability of Heat Flow due to the Random Thermal Conductivity of Crust, Geophys J. Int., 2005, no. 160, pp. 776–782.

    ADS  Article  Google Scholar 

  28. 28.

    Stefanou, G., The Stochastic Finite Element Method: Past, Present and Future, Comput. Meth. Appl. Mech. Eng., 2009, no. 198, pp. 1031–1051.

    Article  MATH  Google Scholar 

  29. 29.

    Tzow Da Yu, Stochastic Analysis of Temperature Distribution in a Solid with Random Heat Conductivity, Trans. ASME, J. Heat Transfer, 1988, vol. 110, pp. 23–29.

    Article  Google Scholar 

  30. 30.

    Yoshimura, T. and Campo, A., Extended Surface Heat Rejection Accounting for Stochastic Sink Temperatures, AIAA J., 1981, vol. 19, pp. 221–225.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Madera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madera, A.G. Interval-stochastic thermal processes in electronic systems: Analysis and modeling. J. Engin. Thermophys. 26, 17–28 (2017). https://doi.org/10.1134/S1810232817010039

Download citation