Skip to main content
Log in

Numerical analysis for peristalsis of Carreau–Yasuda nanofluid in an asymmetric channel with slip and Joule heating effects

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This study investigates the peristaltic transport of magnetohydrodynamic (MHD) Carreau–Yasuda nanofluid through an asymmetric channel. Viscous dissipation, Joule heating and Hall effects are also included in the analysis. Velocity, thermal and concentration slip conditions are considered. The problem is modeled subject to long wavelength and low Reynolds number assumptions. Resulting nonlinear equations are numerically solved. Impact of embedded parameters on the fluid velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are examined. Graphical results show that an escalation in the strength of appliedmagnetic field and increase in the value of Hall parameter reduce the velocity of nanofluid. Brownian motion and thermophoresis effects increase the temperature of the nanofluid. The present study shows an excellent agreement with the previously available studies in the limiting case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latham, T.W., Fluid Motion in a Peristaltic Pump, M.S. Thesis, Cambridge, MA: Massachusetts Institute of Technology, 1966.

    Google Scholar 

  2. Shapiro, A.H., Jaffrin, M.Y., and Wienberg, S.L., Peristaltic Pumping with Long Wavelengths at Low Reynolds Number, J. Fluid Mech., 1969, vol. 37, pp. 799–825.

    Article  ADS  Google Scholar 

  3. Elshahed, M. and Haroun, M.H., Peristaltic Transport of Johnson–Segalman Fluid under Effect of a Magnetic Field, Math. Probl. Eng., 2005, pp. 663–677.

    Google Scholar 

  4. Hayat, T., Abbasi, F.M., and Hendi, A.A., Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid, Chinese Phys. Lett., 2011, vol. 28, p. 044701.

    Article  ADS  Google Scholar 

  5. Srinivas, S. and Muthuraj, R., Effects of Chemical Reaction and Space Porosity on MHDMixed Convective Flow in a Vertical Asymmetric Channel with Peristalsis, Math. Comp. Mod., 2011, vol. 54, pp. 1213–1227.

    Article  MathSciNet  MATH  Google Scholar 

  6. Abd Elmaboud, Y. and Mekheimer, Kh.S., Non-Linear Peristaltic Transport of a Second-Order Fluid through a PorousMedium, Appl.Math. Mod., 2011, vol. 35, pp. 2695–2710.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mekheimer, Kh.S., Komy, S.R., and Abdelsalamd, S.I., Simultaneous Effects of Magnetic Field and Space Porosity on CompressibleMaxwell Fluid Transport Induced by a Surface AcousticWave in aMicrochannel, Chin. Phys. B, 2013, vol. 22, p. 124702.

    Article  Google Scholar 

  8. Mekheimer, Kh.S., Abd Elmaboud, Y., and Abdellateef, A.I., Particulate Suspension Flow Induced by Sinusoidal Peristaltic Waves through Eccentric Cylinders: Thread Annular, Int. J. Biomath., 2013, vol. 6, p. 1350026.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lachiheb, M., Effect of Coupled Radial and Axial Variability of Viscosity on the Peristaltic Transport of Newtonian Fluid, Appl.Math. Comput., 2014, vol. 244, pp. 761–771.

    MathSciNet  MATH  Google Scholar 

  10. Javed, M., Hayat, T., and Alsaedi, A., Peristaltic Flow of Burgers’ Fluid with Compliant Walls and Heat Transfer, Appl.Math. Comput., 2014, vol. 244, pp. 654–671.

    MathSciNet  MATH  Google Scholar 

  11. Hayat, T., Abbasi, F.M., Ahmad, B., and Alsaedi, A., Peristaltic Transport of Carreau–Yasuda Fluid in a Curved Channel with Slip Effects, PLoS ONE, 2014, vol. 9, no. 4, p. e95070.

    Article  ADS  Google Scholar 

  12. Abbasi, F.M., Hayat, T., and Alsaedi, A., Effects of Inclined Magnetic Field and Joule Heating in Mixed Convective Peristaltic Transport of Non-Newtonian Fluids, Bull. Pol. Acad. Sci.-Tech. Sci., 2015, vol. 63, no. 2, pp. 501–514.

    Google Scholar 

  13. Abbasi, F.M., Hayat, T., and Ahmad, B., Numerical Analysis for Peristaltic Transport of Carreau–Yasuda Fluid with Variable Thermal Conductivity and Convective Conditions, J. Cent. South Univ., 2015, vol. 22, pp. 4467–4475.

    Article  Google Scholar 

  14. Hayat, T., Abbasi, F.M., Alhuthali, M.S., Ahmad, B., and Chen, G.Q., Soret andDufour Effects on Peristaltic Transport of a Third-Order Fluid, Heat Transfer Res., 2014, vol. 45, pp. 1–13.

    Article  Google Scholar 

  15. Hayat, T., Ali, N., and Asghar, S., Hall Effects on Peristaltic Flow of a Maxwell Fluid in a Porous Medium, Phys. Lett. A, 2007, vol. 363, pp. 397–403.

    Article  ADS  MATH  Google Scholar 

  16. Gad, N.S., Effects of Hall Current on Interaction of Pulsatile and Peristaltic Transport Induced Flows of a Particle-Fluid Suspension, Appl.Math. Comput., 2011, vol. 217, pp. 4313–4320.

    MathSciNet  MATH  Google Scholar 

  17. Mekheimer, Kh.S. and Elkot, M.A., Influence ofMagnetic Field and Hall Currents on Blood Flow through a Stenotic Artery, Appl. Math. Mech., 2008, vol. 29, pp. 1093–1104.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hayat, T., Abbasi, F.M., Alsaedi, A., and Alsaadi, F., Hall and Ohmic Heating Effects on the Peristaltic Transport of Carreau–Yasuda Fluid in an Asymmetric Channel, Z. Naturforsch, 2014, vol. 69a, pp. 43–51.

    ADS  Google Scholar 

  19. Choi, S.U.S., Enhancing Thermal Conductivity of Fluid withNanofluid, in Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and Wang, H.P. (Eds.), ASME J. Heat Transfer, 1995, vol. 66, pp. 99–105.

    Google Scholar 

  20. Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transfer, 2006, vol. 128, pp. 240–250.

    Article  Google Scholar 

  21. Mustafa, M., Hina, S., Hayat, T., and Alsaedi, A., Slip Effects on the Peristaltic Motion of Nanofluid in a Channel withWall Properties, ASME J. Heat Transfer, 2012, vol. 135, pp. 041701–041708.

    Article  Google Scholar 

  22. Abbasi, F.M., Hayat, T., and Alsaadi, F., Hydromagnetic Peristaltic Transport of Water-Based Nanofluids with Slip Effects through an Asymmetric Channel, Int. J. Modern Phys. B, 2015, vol. 29, p. 1550151.

    Article  ADS  MATH  Google Scholar 

  23. Hayat, T., Abbasi, F.M., and Ahmad, B., Numerical Study for Transport of Water Based Nanofluids through an Asymmetric Channel with Wavy Walls, Int. J. Num. Meth. Heat Fluid Flow, 2015, vol. 25, pp. 1868–1885.

    Article  MathSciNet  Google Scholar 

  24. Abbasi, F.M., Hayat, T., and Alsaedi, A., Transport of Cu-H2O Nanofluid through aChannel withWavyWalls under Velocity Slip and Convective Boundary Conditions, Int. J. Biomath., 2016, vol. 9, p. 1650022.

    Article  MathSciNet  MATH  Google Scholar 

  25. Srinivas, S. and Kothandapani, M., Peristaltic Transport in an Asymmetric Channel with Heat Transfer—A Note, Int. Commun. Heat Mass Transfer, 2008, vol. 35, pp. 514–522.

    Article  MATH  Google Scholar 

  26. Abbasi, F.M., Hayat, T., Ahmad, B., and Chen, G.Q., Peristaltic Motion of Non-Newtonian Nanofluid in an Asymmetric Channel, Z. Naturforsch, 2014, vol. 69a, pp. 451–461.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F.M., Hayat, T. & Ahmad, B. Numerical analysis for peristalsis of Carreau–Yasuda nanofluid in an asymmetric channel with slip and Joule heating effects. J. Engin. Thermophys. 25, 548–562 (2016). https://doi.org/10.1134/S1810232816040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232816040123

Navigation