Skip to main content

Application of particle swarm+ant colony optimization to calculate the interaction parameters on phase equilibria


In this study, a hybrid particle swarm+ant colony optimization (PSO+ACO) was applied to solve the vapor–liquid phase equilibrium. The NRTL activity coefficient model was optimized with this new algorithm and the binary interaction parameters of twenty mixtures were obtained. The results were compared with the Levenberg–Marquardt algorithm, and show that the PSO+ACO algorithm is a good method to describe the vapor–liquid equilibrium of any binary system.

This is a preview of subscription content, access via your institution.


  1. 1.

    Prausnitz, J.M. and Tavares, F.W., Thermodynamics of Fluid-Phase Equilibria for Standard Chemical Engineering Operations, AIChE J., 2004, vol. 50, pp. 739–761.

    Article  Google Scholar 

  2. 2.

    Lazzús, J.A., Hybrid Particle Swarm–Ant Colony Algorithm to Describe the Phase Equilibrium of Systems Containing Supercritical Fluids with Ionic Liquids, Comm. Comput. Phys., 2013, vol. 14, pp. 107–125.

    MathSciNet  Google Scholar 

  3. 3.

    Lazzús, J.A. and Rivera, M., Gas–Solid Phase Equilibrium of Biosubstances by Two Biological Algorithms, Rev.Mex. Fis., 2013, vol. 59, pp. 577–583.

    Google Scholar 

  4. 4.

    Lazzús, J.A., Optimization of Activity CoefficientModels to Describe Vapor–Liquid Equilibrium of (Alcohol +Water)MixturesUsing a Particle Swarm Algorithm, Comput. Math. Appl., 2010, vol. 60, pp. 2260–2269.

    Article  Google Scholar 

  5. 5.

    Lazzús, J.A., Optimization of a Cubic Equation of State and Van der Waals Mixing Rules for Modeling the Phase Behavior of Complex Mixtures, Rev.Mex. Fís., 2012, vol. 58, pp. 510–514.

    Google Scholar 

  6. 6.

    Kennedy, J. and Eberhart, R., Particle Swarm Optimization, Proc. IEEE Int. Conf. on Neural Networks, 1995, pp. 1942–1948.

    Chapter  Google Scholar 

  7. 7.

    Dorigo, M. and Gambardella, L.M., Ant Colonies for the Traveling Salesman Problem, Biosystems, 1997, vol. 43, pp. 73–81.

    Article  Google Scholar 

  8. 8.

    Walas, S.M., Phase Equilibria in Chemical Engineering, Storeham: Butterworth Publishing, 1985.

    Google Scholar 

  9. 9.

    Orbey, H. and Sandler, S.I., Modeling Vapor–Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, USA: Cambridge University Press, 1998.

    Google Scholar 

  10. 10.

    Gmehling, J., Onken, U., and Arlt, W., Vapor–Liquid Equilibrium Data Collection. DECHEMA, Frankfurt: Verlag and Druckerei Friedrich Bischoff, 1982.

    Google Scholar 

  11. 11.

    Prausnitz, J.M., Lichtenthaler, R.N., and Gomes de Azevedo, E., Molecular Thermodynamics of Fluid–Phase Equilibria, New Jersey: Prentice Hall International Series, 1999.

    Google Scholar 

  12. 12.

    Jiang, Y., Hu, T., Huang, C.C., and Wu, X., An Improved Particle Swarm Optimization Algorithm, Appl. Math. Comput., 2007, vol. 193, pp. 231–239.

    MATH  Google Scholar 

  13. 13.

    Kennedy, J., Eberhart, R.C., and Shi, Y., Swarm Intelligence, San Francisco: Morgan Kaufman, 2001.

    Google Scholar 

  14. 14.

    Da, T. and Xiurun, G., An Improved PSO-Based ANN with Simulated Annealing Technique, Neurocomputing, 2005, vol. 63, pp. 527–533.

    Article  Google Scholar 

  15. 15.

    Shi, Y. and Eberhart, R.C., A Modified Particle Swarm Optimizer, Proc. IEEE Int. Conf. on Evolutionary Computation, Piscataway: IEEE Press, 1998, pp. 69–73.

    Google Scholar 

  16. 16.

    Kiran, M.S., Ozceylan, E., Gunduz, M., and Paksoy, T., A Novel Hybrid Approach Based on Particle Swarm Optimization and Ant Colony Algorithm to Forecast Energy Demand of Turkey, Energy Convers. Manag., 2012, vol. 53, pp. 75–83.

    Article  Google Scholar 

  17. 17.

    Niknam, T. and Amiri, B., An Efficient Hybrid Approach Based on PSO, ACO and k-Means for Cluster Analysis, Appl. Soft Comput., 2010, vol. 10, pp. 183–197.

    Google Scholar 

  18. 18.

    Muller, R.J, Monekosso, D., Barman, S., and Remagnino, P., A Review of Ant Algorithms, Exp. Syst. Appl., 2009, vol. 36, pp. 9608–9617.

    Article  Google Scholar 

  19. 19.

    Shelokar, P.S., Siarry, P., Jayaraman, V.K., and Kulkarni, B.D., Particle Swarm and Ant Colony Algorithms Hybridized for Improved Continuous Optimization, Appl. Math. Comput., 2007, vol. 188, pp. 129–142.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Kaveh, A. and Talatahari, S., Engineering Optimization with Hybrid Particle Swarm and Ant Colony Optimization, Asian J. Civil Eng., 2009, vol. 10, pp. 611–628.

    Google Scholar 

  21. 21.

    Marinakis, Y., Marinaki, M., Doumpos, M., and Zopounidis, C., Ant Colony and Particle Swarm Optimization for Financial Classification Problems, Exp. Syst. Appl., 2009, vol. 36, pp. 10604–10611.

    Article  Google Scholar 

  22. 22.

    Tester, J. and Modell, M., Thermodynamics and Its Applications, New York: Prentice-Hall, 2000.

    Google Scholar 

  23. 23.

    Reilly, M., Computer Programs for Chemical Engineering Education, Texas: Sterling Swift, 1972.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. A. Lazzús.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lazzús, J.A., Rivera, M., Salfate, I. et al. Application of particle swarm+ant colony optimization to calculate the interaction parameters on phase equilibria. J. Engin. Thermophys. 25, 216–226 (2016).

Download citation


  • Particle Swarm Optimization
  • Particle Swarm
  • Inertia Weight
  • Liquid Equilibrium