Skip to main content

Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling

Abstract

Perforated steel plates are structural components widely employed in engineering. In several applications these panels are subjected to axial compressive load, being undesired the occurrence of buckling. The present work associates the computational modeling and the constructal design method to obtain geometries, which maximizes the mechanical behavior for these components. A numerical model was used to tackle with elastic and elasto-plastic buckling. Square and rectangular plates with centered elliptical cutouts were considered and several hole volume fractions and ratios between the ellipse axes (H 0/L 0) were taken into account. Stress limit improvements around 100% were achieved depending only on the cutout shape.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Silva, V.D., Mechanics and Strength of Materials, New York: Springer, 2006.

    Book  Google Scholar 

  2. 2.

    El-Sawy, K.M., Nazmy, A.S., and Martini, M.I., Elasto-Plastic Buckling of Perforated Plates under Uniaxial Compression, Thin Wall Struct., 2004, vol. 42, pp. 1083–1101.

    Article  Google Scholar 

  3. 3.

    Cheng, B. and Zhao, J., Strengthening of Perforated Plates under Uniaxial Compression: Buckling Analysis, Thin Wall Struct., 2010, vol. 48, pp. 905–914.

    Article  Google Scholar 

  4. 4.

    El-Sawy, K.M. and Nazmy, A.S., Effect of Aspect Ratio on the Elastic Buckling of Uniaxially Loaded Plates with Eccentric Holes, Thin Wall Struct., 2001, vol. 39, pp. 983–998.

    Article  Google Scholar 

  5. 5.

    El-Sawy, K.M. and Martini, M.I., Elastic Stability of Bi-Axially Loaded Rectangular Plates with a Single Circular Hole, Thin Wall Struct., 2007, vol. 45, pp. 122–133.

    Article  Google Scholar 

  6. 6.

    Moen, C.D. and Schafer, B.W., Elastic Buckling of Thin Plates with Holes in Compression or Bending, Thin Wall Struct., 2009, vol. 47, pp. 1597–1607.

    Article  Google Scholar 

  7. 7.

    Rocha, L.A.O., Real, M.V., Correia, A.L.G., Vaz, J., dos Santos, E.D., and Isoldi, L.A., GeometricOptimization Based on the Constructal Design of Perforated Thin Plates Subject to Buckling, Comput. Ther. Sci., 2012, vol. 4, pp. 119–129.

    Article  Google Scholar 

  8. 8.

    Isoldi, L.A., Real, M.V., Correia, A.L.G., Vaz, J., dos Santos, E.D., and Rocha, L.A.O., The Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling, in Constructal Law and the Unifying Principle of Design, Rocha, L.A.O., Lorente, S., and Bejan, A., Eds., New York: Springer, 2013, pp. 195–217.

    Chapter  Google Scholar 

  9. 9.

    Rocha, L.A.O., Isoldi, L.A., Real, M.V., dos Santos, E.D., Correia, A.L.G., Lorenzini, G., et al., Constructal Design Applied to the Elastic Buckling of Thin Plates with Holes, Cent. Eur. J. Eng., 2013, vol. 3, pp. 475–483.

    Google Scholar 

  10. 10.

    Paik, J.K., Ultimate Strength of Perforated Steel Plates under Edge Shear Loading, ThinWall Struct., 2007, vol. 45, pp. 301–306.

    Google Scholar 

  11. 11.

    Paik, J.K., Ultimate Strength of Perforated Steel Plates under Axial Compressive Loading along Short Edges, Ships off Sh. Struct., 2007, vol. 2, pp. 355–360.

    Article  Google Scholar 

  12. 12.

    Paik, J.K., Ultimate Strength of Perforated Steel Plates under Combined Biaxial Compression and Edge Shear Loads, Thin Wall Struct., 2008, vol. 46, pp. 207–213.

    Article  Google Scholar 

  13. 13.

    Maiorana, E., Pellegrino, C., and Modena, C., Linear Buckling Analysis of Perforated Plates Subjected to Localized Symmetrical Load, Eng. Struct., 2008, vol. 30, pp. 3151–3158.

    Article  Google Scholar 

  14. 14.

    Maiorana, E., Pellegrino, C., and Modena, C., Non-Linear Analysis of Perforated Steel Plates Subjected to Localized Symmetrical Load, J. Constr. Steel Res., 2009, vol. 65, pp. 959–964.

    Article  Google Scholar 

  15. 15.

    Bejan, A. and Lorente, S., The Constructal Law, Int. J. HeatMass Transfer, 2006, vol. 49, p. 445.

    Article  Google Scholar 

  16. 16.

    Szilard, R., Theories and Applications of Plate Analysis—Classical, Numerical and Engineering Methods, Hoboken: Wiley, 2004.

    Book  Google Scholar 

  17. 17.

    Akesson, B., Plate Buckling in Bridges and Other Structures, London: Taylor & Francis, 2007.

    Google Scholar 

  18. 18.

    Yoo, C.H. and Lee, S.C., Stability of Structures—Principles and Applications, Oxford: Elsevier, 2011.

    Google Scholar 

  19. 19.

    Bejan, A. and Lorente, S., Design with Constructal Theory, Hoboken: Wiley, 2008.

    Book  Google Scholar 

  20. 20.

    Bejan, A., Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume, Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 799–816.

    Article  MATH  Google Scholar 

  21. 21.

    Bejan, A., Shape and Structure, From Engineering to Nature, Cambridge: Cambridge University Press, 2000.

    MATH  Google Scholar 

  22. 22.

    Ghodoossi, L., Conceptual Study on Constructal Theory, Energ. Convers. Manag., 2004, vol. 45, pp. 1379–1395.

    Article  Google Scholar 

  23. 23.

    Bejan, A. and Lorente, S., Constructal Theory of Generation of Configuration in Nature and Engineering, J. Appl. Phys., 2006, vol. 100, p. 041301.

    ADS  Article  Google Scholar 

  24. 24.

    Bejan, A. and Lorente, S., Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society. J. Appl. Phys., 2013, vol. 113, p. 151301.

    Article  Google Scholar 

  25. 25.

    Bejan, A. and Zane, J.P., Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization, New York: Doubleday, 2012.

    Google Scholar 

  26. 26.

    Lorente, S. and Bejan, A., Combined ‘Flow and Strength’ Geometric Optimization: Internal Structure in a Vertical InsulatingWall with Air Cavities and Prescribed Strength, Int. J. HeatMass Transfer, 2002, vol. 45, pp. 3313–3320.

    Article  MATH  Google Scholar 

  27. 27.

    Lorente, S., Lee, J., and Bejan, A., The “Flow of Stresses” Concept: The Analogy between Mechanical Strength and Heat Convection, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 2963–2968.

    Article  MATH  Google Scholar 

  28. 28.

    Bathe, K.-J., Finite Element Procedures, Bergen County: Prentice-Hall, 1996.

    MATH  Google Scholar 

  29. 29.

    Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, vol. 1: The Basis, 5th ed., Oxford: Butterworth–Heinemann, 1989.

    MATH  Google Scholar 

  30. 30.

    Real, M. de V. and Isoldi, L.A., Finite Element Buckling Analysis of Uniaxially Loaded Plates with Holes, Proc. IV Southern Conf. on Computational Modeling (MCSul), Rio Grande: FURG, 2010, pp. 69–73.

    Google Scholar 

  31. 31.

    ANSYS, User’s Manual, Swanson Analysis System Inc., 2005.

  32. 32.

    Madenci, E. and Guven, I., The Finite Element Method and Applications in Engineering Using ANSYS R, New York: Springer, 2006.

    Google Scholar 

  33. 33.

    Przemieniecki, J.S., Theory of Matrix Structural Analysis, Mineola: Dover Publ., 1985.

    MATH  Google Scholar 

  34. 34.

    Wang, C.M., Wang, C.Y., and Reddy, J.N., Exact Solutions for Buckling of Structural Members, Boca Raton: CRC Press, 2005.

    Google Scholar 

  35. 35.

    Lorenzini, G., Biserni, C., Isoldi, L.A., dos Santos, E.D., and Rocha, L.A.O., Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium, J. El. Packag., 2011, vol. 133, p. 041008.

    Article  Google Scholar 

  36. 36.

    Lorenzini, G., Rocha, L.A.O., Biserni, C., dos Santos, E.D., and Isoldi L.A., Constructal Design of Cavities Inserted into a Cylindrical Solid Body, J. Heat Transfer, 2012, vol. 134, pp. 071301-1–6.

    Article  Google Scholar 

  37. 37.

    Lorenzini, G., Biserni, C., Estrada, E., Isoldi, L.A., dos Santos, E.D., and Rocha, L.A.O., Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm, J. Heat Transfer, 2014, vol. 136, p. 071702.

    Article  Google Scholar 

  38. 38.

    Lorenzini, G., Biserni, C., Estrada, E., dos Santos, E.D., Isoldi, L.A., and Rocha, L.A.O., Genetic Algorithm Applied to Geometric Optimization of Isothermal Y-Shaped Cavities, J. El. Packag., 2014, vol. 136, p. 031011.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Lorenzini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorenzini, G., Helbig, D., Real, M.d. et al. Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. J. Engin. Thermophys. 25, 197–215 (2016). https://doi.org/10.1134/S1810232816020053

Download citation

Keywords

  • Critical Load
  • Rectangular Plate
  • Optimal Shape
  • Constructal Theory
  • Elliptical Hole