Skip to main content

Determination of thermal conductivity of silica dioxide Tarkosil T-50 nanopowder by laser flash technique

Abstract

Results of measuring the thermal conductivity coefficient of silica dioxide Tarkosil T-50 nanopowder by a laser flash technique are reported. Experimental data on thermal conductivity of nanopowder in vacuum, in different gas media, and at different temperatures were obtained. Comparative analysis of thermal conductivity was performed for the T-50 nanopowder and materials with close density values. Based on the experimental data, we obtained a mathematical model to determine the thermal conductivity coefficient of T-50 nanopowder in different gas media.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Basic Characteristics of AEROSIL R Fumed Silica, Technical Bulletin Fine Particles 11 (Basic Characteristics of AEROSIL, Technical Bulletin Pigments, no. 11).

  2. 2.

    Bardakhanov, S., Zavyalov, A., Zobov, K., Lysenko, V., Nomoev, A., Obanin, V., and Trufanov, D., Determining the Thermal Conductivity Coefficient of Silicon Dioxide Nanopowders, Nanoindustriya, 2008, no. 5, pp. 24–26.

    Google Scholar 

  3. 3.

    Xinghua Zheng, Lin Qiu, Guoping Su, Dawei Tang, Yuchao Liao, and Yunfa Chen, Thermal Conductivity and Thermal Diffusivity of SiO2 Nanopowder, J. Nanopart. Res., 2011, vol. 13, pp. 6887–6893.

  4. 4.

    GOST 7076-87, Materialy i izdeliya stroitelnye. Metod opredeleniya teploprovodnosti (Building Products and Materials. Thermal Conductivity Calculation Method).

  5. 5.

    GOST 30256-94, Metod opredeleniya temploprovodnosti tsilindricheskim zondom (Method for Determination of Thermal Conductivity by a Cylindrical Probe).

  6. 6.

    Krasnov, V.A. and Savchenkov, G.A., A Device to Determine a Thermal Conductivity Coefficient of Disperse Materials by a Constant-Power Cylindrical Probe Method, Abstr. Vsesoyuznoi nauchno-tekhnicheskoi konf. “Metody i sredstva teplofizicheskikh izmerenii” (All-Union Sci.-Tech. Conf. on Methods and Means for ThermophysicalMeasurements), Sevastopol, 1987, pp. 42–43.

    Google Scholar 

  7. 7.

    http://wwwnetzsch-thermal-analysiscom/ru.

  8. 8.

    Bardakhanov, S.P., Korchagin, A.I., Kuksanov, N.K., Lavrukhin, A.V., Salimov, R.A., Fadeev, S.N., and Cherepkov, V.V., Production of Nanopowders by Evaporation of Initial Substances on Electron Accelerator at Atmospheric Pressure, Dokl. Akad. Nauk, 2006, vol. 409, no. 3, pp. 320–323.

    Google Scholar 

  9. 9.

    Vasilyev, L.L. and Tanaeva, S.A., Teplofizicheskie svoistva poristykh materialov (Thermophysical Properties of PorousMaterials), Minsk, 1971.

    Google Scholar 

  10. 10.

    Sheludyak, Yu.E., Kashporov, L.Ya., et al., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of Combustible System Components), Moscow, 1992.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Ts. Lygdenov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nomoev, A.V., Bardakhanov, S.P., Syzrantsev, V.V. et al. Determination of thermal conductivity of silica dioxide Tarkosil T-50 nanopowder by laser flash technique. J. Engin. Thermophys. 25, 174–181 (2016). https://doi.org/10.1134/S181023281602003X

Download citation

Keywords

  • Thermal Conductivity
  • Fume Silica
  • Asbestos
  • Thermal Conductivity Coefficient
  • Engineer THERMOPHYSICS