Skip to main content
Log in

Bubble boiling in droplets of water and lithium bromide water solution

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The dynamics of growth and interaction of vapor bubbles in droplets of pure water and LiBr water solution on a horizontal wall were investigated in a wide superheating range. The growth rates of bubbles were determined both in a distillate droplet and in a salt solution droplet. The bubble growth rate in a pure water droplet at the final stage is somewhat lower than in pool boiling. The bubble growth rate in a salt solution is substantially lower than for pure water. Due to the bubble density maldistribution, the vapor flow density is appreciably higher at the droplet edges than on the droplet axis. Collective behavior of the bubbles possesses both stochastic character and elements of self-organization. The thermal measurements were carried out by means of high-speed video and blowup thermal imager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikolayev, V.S., Dynamics of the Triple Contact Line on a Non-Isothermal Heater at Partial Wetting, Phys. Fluids 2, 2010, vol. 2, no. 8, p. 082105.

    Article  Google Scholar 

  2. Nazarov, A.D., Serov, A.F., Terekhov, V.I., and Sharov, K.A., Experimental Investigation of Evaporative Cooling by Pulsed Spray, Inzh.-Fiz. Zh., 2009, vol. 82, no. 6, pp. 1160–1166.

    Google Scholar 

  3. Nazarov, A.D., Serov, A.F., and Terekhov, V.I., The Effect of Cocurrent Gas Flow in Pulsed Spray on the Evaporative Cooling Process, Teplofiz. Vys. Temp., 2014, vol. 52, no. 4, pp. 605–609.

    Google Scholar 

  4. Vysokomornaya, O.V., Kuznetsov, G.V., and Strizhak, P.A., Experimental Investigation of Atomized Water Droplet Initial Parameters Influence on Evaporation Intensity in Flaming Combustion Zone, Fire Safety J., 2014, vol. 70, pp. 61–70.

    Article  Google Scholar 

  5. Glushkov, D.O., Kuznetsov, G.V., Strizhak, P.A., and Volkov, R.S., Experimental Investigation of Evaporation Enhancement forWater Droplet Containing Solid Particles in Flaming Combustion Area, Thermal Sci., 2015; DOI: 10.2298/TSCI140901005G.

    Google Scholar 

  6. Volkov, R.S., Kuznetsov, G.V., and Strizhak, P.A., The Influence of Initial Sizes and Velocities of Water Droplets on Transfer Characteristics at High-Temperature Gas Flow, Int. J. Heat Mass Transfer, 2014, vol. 68, pp. 66–77.

    Google Scholar 

  7. Misyura, S.Y., Nakoryakov, V.E., and Elistratov, S.L., Combustion of Methane Hydrates, J. Eng. Therm., 2013, vol. 22, no. 2, pp. 87–92.

    Article  Google Scholar 

  8. Nakoryakov, V.E. and Misyura, S.Y., The Features of Self-Preservation for Hydrate Systems with Methane, Chem. Eng. Sci., 2013, vol. 104, pp. 1–9.

    Article  Google Scholar 

  9. Misyura, S.Y., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chem. Phys. Lett., 2013, vol. 583, pp. 34–37.

    Article  ADS  Google Scholar 

  10. Misyura, S.Y. and Nakoryakov, V.E., Nonstationary Combustion ofMethane with Gas Hydrate Dissociation, Energy Fuels, 2013, vol. 27 (11), pp. 7089–7097.

    Article  Google Scholar 

  11. Nakoryakov, V.E., Tsoi, A.N., Mezentsev, I.V., and Meleshkin, A.V., Explosive Boiling of a Liquid Nitrogen Jet in a Water, J. Eng. Therm., 2014, vol. 23, no. 1, pp. 1–8.

    Article  Google Scholar 

  12. Nakoryakov, V.E., Tsoi, A.N., Mezentsev, I.V., and Meleshkin, A.V., Boiling-Up of Liquid Nitrogen Jet in Water, Thermophys. Aeromech., 2014, vol. 21, no. 3, pp. 279–284.

    Article  ADS  Google Scholar 

  13. Nakoryakov, V.E., Tsoi, A.N., Mezentsev, I.V., and Meleshkin, A.V., Explosive Boiling of Liquid Nitrogen, Therm. Eng., 2014, vol. 61, no. 13, pp. 919–923.

    Article  ADS  Google Scholar 

  14. Nakoryakov, V.E., Tsoi, A.N., Mezentsev, I.V., and Meleshkin, A.V., Explosive Boiling of Liquid Nitrogen, Izv. RAN, Energetika, 2014, no. 3, pp. 61–68.

    Google Scholar 

  15. Avksentyuk, B.P. and Ovchinnikov, V.V, Third Heat Transfer Crisis at Subcooling, Thermophys. Aeromech., 2008, vol. 15, pp. 267–274.

  16. Avksentyuk, B.P. and Ovchinnikov, V.V., The Shape of a Vapor Cavity at Explosive Heterogeneous Boiling, Thermophys. Aeromech., 2004, vol. 11, pp. 609–616.

    Google Scholar 

  17. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Peculiarities of Nonisothermal Desorption of Drops of Lithium Bromide Water Solution on a Horizontal Heated Surface, J. Eng. Therm., 2011, vol. 20, no. 4, pp. 1–6.

    Google Scholar 

  18. Nakoryakov, V.E. and Misyura, S.Y., Nucleate Boiling in Pure-Water and Salt-Water Droplets, Dokl. Phys., 2014, vol. 59 (10), pp. 441–445.

    Article  ADS  Google Scholar 

  19. Misyura, S.Ya., High-Temperature Nonisothermal Desorption in a Water Salt Droplet, Int. J. Therm. Sci., 2015, vol. 92, pp. 34–43.

    Article  Google Scholar 

  20. Misyura, S.Y., Nakoryakov, V.E., and Elistratov, S.L., Nonisothermal Desorption of Droplets of Complex Composition, Therm. Sci., 2012, vol. 16, no. 4, pp. 997–1004.

    Article  Google Scholar 

  21. Nakoryakov, V.E., Grigoryeva, N.I., Bufetov, N.S., and Dekhtyar, R.A., Heat and Mass Transfer Intensification at Steam Absorption by Surfactant Additive, Int. J. HeatMass Transfer, 2008, vol. 51, pp. 5175–5181.

    Article  MATH  Google Scholar 

  22. Nakoryakov, V.E., Bufetov, N.S., Grigoryeva, N.I., and Dekhtyar, R.A., Heat and Mass Transfer with Vapor Absorption by a Fixed Solution Layer, Prikl. Mekh. Tekhn. Fiz., 2003, vol. 44, no. 2 (258), pp. 101–108.

    MATH  Google Scholar 

  23. Nakoryakov, V.E., Bufetov, N.S., and Dekhtyar, R.A., Effect of Surfactant Added in Small Amounts on Nonisothermal Absorption: An Experimental Study, J. Appl. Mech. Techn. Phys., 2004, vol. 45, no. 2, pp. 276–280.

    Article  ADS  Google Scholar 

  24. Bon, B., Guan, C.-K., and Klausner, J.F., HeterogeneousNucleation on Ultra Smooth Surfaces, Exp. Therm. Fluid Sci., 2011, vol. 35, pp. 746–752.

    Article  Google Scholar 

  25. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., The Behavior ofWater Droplets on the Heated Surface, Int. J. HeatMass Transfer, 2012, vol. 55, pp. 6609–6617.

    Article  Google Scholar 

  26. Chai, L.H., Peng, X.F., and Wang, B.X., Nucleation Site Interaction during Boiling, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 4249–4258.

    Article  MATH  Google Scholar 

  27. Nizovtsev, M.I., Stankus, S.V., Sterlyagov, A.N., Terekhov, V.I., and Khairullin, R.A., Determination of Moisture Diffusivity in Porous Building Materials Using Gamma-Method, Int. J. Heat Mass Transfer, 2008, vol. 51, iss. 17/18, pp. 4161–4167.

    Article  MATH  Google Scholar 

  28. Nizovtsev, M.I., Sterlyagov, A.N., and Terekhov, V.I., Dynamics of Thermal and Moistening Fronts in Porous Material under Capillary Moistening, Therm. Sci., 2013, vol. 17, no. 4, pp. 1071–1078.

    Article  Google Scholar 

  29. Bartashevich, M.V., Marchuk, I.V., and Kabov, O.A., Numerical Simulation of Natural Convection in a Sessile Liquid Droplet, Thermophys. Aeromech., 2012, vol. 19, iss. 2, pp. 317–328.

    Article  ADS  Google Scholar 

  30. Kuznetsov, V.V., Bartashevich, M.V., and Kabov, O.A., Interfacial Balance Equations for Diffusion Evaporation and Exact Solution forWeightless Drop, Micrograv. Sci. Technol., 2012, vol. 24, no. 1, pp. 17–31.

    Article  Google Scholar 

  31. Pavlenko, A.N., Tairov, E.A., Zhukov, V.E., Levin, A.A., and Moiseev, M.I., Dynamics of Transient Processes at Liquid Boiling-up in the Conditions of Free Convection and Forced Flow in a Channel underNonstationary Heat Release, J. Eng. Therm., 2014, vol. 23, no. 3, pp. 173–193.

    Article  Google Scholar 

  32. Pavlenko, A.N., Tairov, E.A., Zhukov, V.E., Levin, A.A., and Tsoi, A.N., Investigation of Transient Processes at Liquid Boiling under Nonstationary Heat Generation Conditions, J. Eng. Therm., 2001, vol. 20, no. 4, pp. 380–406.

    Article  Google Scholar 

  33. Misyura, S.Ya., Nucleate Boiling in Bidistillate Droplets, Int. J. Heat Mass Transfer, 2014, vol. 71, pp. 197–205.

    Article  Google Scholar 

  34. Thokchom, A.K., Gupta, A., Jaijus, P.J., and Singh, A., Analysis of Fluid Flow and Particle Transport in Evaporating Droplets Exposed to Infrared Heating, Int. J. Heat Mass Transfer, 2014, vol. 68, pp. 67–77.

    Article  Google Scholar 

  35. Feoktistov, D.V., Kuznetsov, G.V., and Orlova, E.G., The Evaporation of the Water-Sodium Chlorides Solution Droplets on the Heated Substrate, EPJ Web of Conf., France, 2014, vol. 76, 012039, pp. 1–8.

    Google Scholar 

  36. Nemsilova, L., Timar, P., Timar, P., Stopka, J., Stibranyi, L., and Bales, V., Measurement of Critical Heat Flux Conditions under Vacuum, Chem. Papers, 2014, vol. 68, no. 12, pp. 1767–1773.

    Article  Google Scholar 

  37. Feoktistov, D.V., Orlova, E.G., and Kuznetsov, G.V., Investigation of Drop Dynamic Contact Angle on Copper Surface, EPJ Web of Conf., France, 2015, vol. 82, 01053, pp. 1–5.

    Google Scholar 

  38. Rozentsvaig, A.K. and Strashinskii, C.S., TheGrowth ofVapor Bubbles in the Volume of Superheated Drops, Dispersed in High-Boiling Liquid, Appl. Math. Sci., 2014, vol. 8, no. 151, pp. 7519–7528.

    Google Scholar 

  39. Jingchun Min and Yicun Tang, Theoretical Analysis of Water Film Evaporation Characteristics on an Adiabatic SolidWall, Int. J. Refriger., 2015; DOI: 10.1016/jijrefrig.2015.02.002.

  40. Bin He and Fei Duan, Evaporation and Convective Flow Pattern of a Heated Pendant Silicone Oil Droplet, Int. J. Heat Mass Transfer, 2015, vol. 85, pp. 910–915.

    Article  Google Scholar 

  41. Voegele, A., Experimental and Numerical Investigation of Tangentially-Injected Slot Film Cooling, Dissertation, 2013, Digital repository at the University of Maryland.

    Google Scholar 

  42. Orzechowski, T. and Wcislik, S., Experimental Analysis of the Drop Film Boiling at Ambient Pressure, Energy Convers. Manag., 2013, vol. 76, pp. 918–924.

    Article  Google Scholar 

  43. Mosdorf, R. and Shoji, M., Chaos in Bubbling-Nonlinear Analysis and Modeling, Chem. Eng. Sci., 2003, vol. 58, pp. 3837–3846.

    Article  Google Scholar 

  44. Chai, L.H. and Shoji, M., Self-Organization and Self-Similarity in Boiling Systems, J. Heat Transfer, 2002, vol. 124, pp. 507–515.

    Article  Google Scholar 

  45. Labuntsov, D.A., Fizicheskie osnovy energetiki. Izbrannye trudy po teploobmenu, gidrodinamike, termodinamike (Physical Foundations of Energy: Selected Proceedings on Heat Transfer, Hydrodynamics, and Thermodynamics), Moscow: MEI, 2000.

    Google Scholar 

  46. Lezhnin, S.I. and Nakoryakov, V.E., Growth of Vapor Bubbles from the Solution with One Volatile Component at Surface Desorption, Int. J. Heat Mass Transfer, 2012, vol. 56, pp. 1433–1440.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Misyura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakoryakov, V.E., Misyura, S.Y. Bubble boiling in droplets of water and lithium bromide water solution. J. Engin. Thermophys. 25, 24–31 (2016). https://doi.org/10.1134/S1810232816010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232816010033

Keywords

Navigation