Numerical modeling of pulverized coal combustion in the vortex furnace with dual upper-port loading

Abstract

The work is devoted to numerical modeling of pulverized coal combustion processes in the vortex furnace, which is a prospective design of a boiler unit for thermal power plants. Novel modification of this furnace design characterized by additional tangential-injection nozzle located at the upper part of the vortex combustion chamber is studied. Numerical results for the case of Siberian brown coal combustion in this vortex furnace with dual upper-port loading are presented, including 3-D aerodynamic structure, the fields of temperature, radiated heat fluxes, species and dispersed phase concentrations, as well as the integral heat engineering and ecological parameters.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Nakoryakov, V.E., ANote on Power Engineering in Russia, J. Eng. Therm., 2014, vol. 23, no. 3, pp. 171–172.

    Article  Google Scholar 

  2. 2.

    Salomatov, V.V., Krasinsky, D.V., Anikin, Yu.A., Anufriev, I.S., Sharypov, O.V., and Enkhjargal, Kh., Experimental and Numerical Investigation of Aerodynamic Characteristics of Swirling Flows in a Model of the Swirling-Type Furnace of a Steam Generator, J. Eng. Phys. Therm., 2012, vol. 85, no. 2, pp. 282–293.

    Article  Google Scholar 

  3. 3.

    Anikin, Yu.A., Anufriev, I.S., Shadrin, E.Yu., and Sharypov, O.V., Diagnostics of Swirl Flow Spatial Structure in a Vortex FurnaceModel, Therm. Aeromech., 2014, vol. 21, no. 6, pp. 807–810.

    Google Scholar 

  4. 4.

    Anufriev, I.S., Kopyev, E.P., Krasinsky, D.V., Salomatov, V.V., Shadrin, E.Y., and Sharypov, O.V., Numerical Modeling of Coal Combustion Processes in the Vortex Furnace with Dual-Port Loading, Energy Power Eng., 2013, vol. 5, no. 4B, pp. 306–310.

    Google Scholar 

  5. 5.

    Anufriev, I.S., Anikin, Yu.A., Fil’kov, A.I., Loboda, E.L., Agafontseva, M.V., Kasymov, D.P., Tizilov, A.S., Astanin, A.V., Pesterev, A.V., and Evtyushkin, E.V., Investigation into the Structure of a Swirling Flow in a Model of a Vortex Combustion Chamber by Laser Doppler Anemometry, Tech. Phys. Lett., 2013, vol. 39, no. 1, pp. 30–32.

    Article  ADS  Google Scholar 

  6. 6.

    Anufriev, I.S., Krasinsky, D.V., Shadrin, E.Yu., and Sharypov, O.V., Visualization of Flow Structure in a Vortex Furnace, Tech. Phys. Lett., 2014, vol. 40, no. 10, pp. 879–882.

    Article  ADS  Google Scholar 

  7. 7.

    Krasinsky, D.V., Salomatov, V.V., Anufriev, I.S., Sharypov, O.V., Shadrin, E.Yu., and Anikin, Yu.A., Modeling of Pulverized Coal Combustion Processes in a Vortex Furnace of ImprovedDesign. Part 1: Flow Aerodynamics in a Vortex Furnace, Thermal Eng., 2015, vol. 62, no. 2, pp. 117–122.

    Article  ADS  Google Scholar 

  8. 8.

    Krasinsky, D.V., Salomatov, V.V., Anufriev, I.S., Sharypov, O.V., Shadrin, E.Yu., and Anikin, Yu.A., Modeling of Pulverized Coal Combustion Processes in a Vortex Furnace of Improved Design. Part 2: Combustion of Brown Coal from the Kansk-Achinsk Basin in a Vortex Furnace, Thermal Eng., 2015, vol. 62, no. 3, pp. 208–214.

    Article  ADS  Google Scholar 

  9. 9.

    Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J., A New k-e Eddy-Viscosity Model for High ReynoldsNumber Turbulent Flows—ModelDevelopment and Validation, Comp. Fluids, 1995, vol. 24, no. 3, pp. 227–238.

    Article  MATH  Google Scholar 

  10. 10.

    Launder, B.E. and Spalding, D.B., Lectures in Mathematical Models of Turbulence, London: Academic Press, 1972.

    Google Scholar 

  11. 11.

    Magnussen, B.F. and Hjertager, B.H., On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, Proc. Combust. Inst., 1977, vol. 16, no. 1, pp. 719–729.

    Article  Google Scholar 

  12. 12.

    Smith, T.F., Shen, Z.F., and Friedman, J.N., Evaluation of Coefficients for theWeighted Sum of Gray Gases Model, Proc. XX Nat. ASME-AIChE Heat Transfer Conf., Milwakee, USA, August 2–5, 1981.

    Google Scholar 

  13. 13.

    Volkov, E.P., Zaichik, L.I., and Pershukov, V.A., Modelirovanie goreniya tverdogo topliva (Modeling of Solid Fuel Combustion), Moscow: Nauka, 1994.

    Google Scholar 

  14. 14.

    FLUENT 6.3 User’s Guide, Fluent Inc., 2006.

  15. 15.

    Issa, R.I., Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting, J. Comp. Phys., 1986, vol. 62, pp. 40–65.

    MathSciNet  Article  ADS  MATH  Google Scholar 

  16. 16.

    Crowe, C.T., Sharma, M.P., and Stock, D.E., The Particle-Source-In-Cell (PSI-CELL) Model for Gas- Droplet Flows, ASME J. Fluids Eng., 1977, vol. 99, no. 2, pp. 325–332.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. V. Krasinsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krasinsky, D.V., Sharypov, O.V. Numerical modeling of pulverized coal combustion in the vortex furnace with dual upper-port loading. J. Engin. Thermophys. 24, 348–356 (2015). https://doi.org/10.1134/S1810232815040098

Download citation

Keywords

  • Vortex
  • Engineer THERMOPHYSICS
  • Vortex Chamber
  • Engineering THERMOPHYSICS
  • Boiler Unit