Skip to main content
Log in

Experimental investigation on thermal conductivity enhancement of copper (II) oxide-DI water nanofluids

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The thermal conductivity enhancement of CuO-deionized water nanofluids over the deionized water is measured using a tailor-made measurement device that uses the 3-ω technique. The measurement and prediction are carried out for temperatures between 15 and 35°C and volume fractions of 0.025%, 0.05%, and 0.1%. The enhancement in thermal conductivity over the base fluid for the tested conditions is observed to be 13 to 25%. A comparison between the measured data and the predicted ones using established correlations reveals that the deviation in prediction is within ±10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Developments and Applications of Non-Newtonian Flows, Choi, S.U.S. et al., Eds., 1995, vol. 231, pp. 99–105.

  2. Das, S.K. et al., Nanofluids: Science and Technology, New Jersey: Wiley, 2007.

    Book  Google Scholar 

  3. Corbino, O.M., Periodic Variation of Resistance of Metallic Filaments on Alternating Current, Attidella Reale Accademia Nazionale de iLincei, 1911, vol. 20, pp. 222–228.

    MATH  Google Scholar 

  4. Cahill, D.G., Thermal Conductivity of Thin Films: Measurements and Understanding, J. Vac. Sci. Techn. A, 1989, vol. 7, no. 3, pp. 1259–1266.

    Article  ADS  Google Scholar 

  5. Cahill, D.G., Thermal Conductivity Measurement from 30 to 750 K: The 3-Omega Method, Rev. Sci. Instr., 1990, vol. 61, no. 2, pp. 802–808.

    Article  ADS  Google Scholar 

  6. Dames, C. and Chen, G., 1ω, 2ω, and 3ω Methods for Measurements of Thermal Properties, Rev. Sci. Instr., 2005, vol. 76, pp. 1–14.

    Article  Google Scholar 

  7. Lu, L. et al., 3ω Method for Specific Heat and Thermal Conductivity Measurements, Rev. Sci. Instr., 2001, vol. 72, pp. 2996–3003.

    Article  ADS  Google Scholar 

  8. De Koninck, D., Thermal Conductivity Measurements Using the 3-Omega Technique: Application to Power Harvesting Microsystems, M. Engg. Thesis, 2008, McGill University, Canada.

    Google Scholar 

  9. Oh, D.W. et al., Thermal Conductivity Measurement and Sedimentation Detection of Aluminum Oxide Nanofluids by Using the 3ω Method, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 1456–1461.

    Article  Google Scholar 

  10. Wang, H. and Sen, M., Analysis of the 3-Omega Method for Thermal Conductivity Measurement, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 2102–2109.

    Article  MATH  Google Scholar 

  11. Karthik, R., Harish, N., Raja, B., and Damodharan, P., Measurement of Thermal Conductivity of Fluids Using 3-ω Method in a Suspended Microwire, J. Eng. Therm., 2012, vol. 21, no. 1, pp. 60–68.

    Article  Google Scholar 

  12. Wang, Z.L. et al., Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport, Int. J. Thermophys., 2007, vol. 28, pp. 1255–1268.

    Article  ADS  Google Scholar 

  13. Technical Manual SR-830DSP Lock-in Amplifier-Manual, Stanford Research Systems, 2005.

  14. Wojciechowski, K.T. et al., Application of DLC Layers in 3-Omega Thermal Conductivity Method, J. Achiev. Mater. Manufact. Eng., 2009, vol. 37, pp. 512–517.

    Google Scholar 

  15. Yusibani, E. et al., Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas, Int. J. Thermophys., 2009, vol. 30, pp. 397–415.

    Article  ADS  Google Scholar 

  16. Maxwell, J.C., A Treatise on Electricity and Magnetism, 2nd ed., Cambridge: Oxford Univ. Press, 1904, pp. 435–441.

    Google Scholar 

  17. Yu, W. and Choi, S.U.S., The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model, J. Nanopart., 2004, vol. 6, pp. 355–361.

    Article  Google Scholar 

  18. Xuan, Y. et al., Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE J., 2003, vol. 49, no. 4, pp. 1038–1043.

    Article  MathSciNet  Google Scholar 

  19. Lu, S.Y. and Lin, H.C., Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity, J. Appl. Phys., 1996, vol. 79, pp. 6761–6769.

    Article  ADS  Google Scholar 

  20. Koo, J. and Kleinstreuer, C., A New Thermal Conductivity Model for Nanofluids, J. Nanopart. Res., 2004, vol. 6, pp. 577–588.

    Article  Google Scholar 

  21. Prasher, R. et al., Brownian Motion Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids, J. Heat Transfer., 2006, vol. 128, pp. 588–595.

    Article  Google Scholar 

  22. Kumar, D.H. et al., Model for Heat Conduction in Nanofluids, Phys. Rev. Lett., 2004, vol. 93, pp. 1–4.

    Article  Google Scholar 

  23. Keblinski, P. et al., Nanofluids for Thermal Transport, Materials Today, 2005, vol. 8, pp. 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, R., Harish Nagarajan, R., Praveen, K.S. et al. Experimental investigation on thermal conductivity enhancement of copper (II) oxide-DI water nanofluids. J. Engin. Thermophys. 23, 341–349 (2014). https://doi.org/10.1134/S1810232814040122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232814040122

Keywords

Navigation