Skip to main content

Series solutions for turbulent plumes evolving in a natural environment


Closed form solutions to the boundary layer equations for turbulent point and line thermal plumes evolving in natural convection have been obtained in the form of power series for the case when the turbulent viscosity is assumed to be proportional to the vertical height above the source. The initial values needed to generate the coefficients of the power series for different turbulent Prandtl number have been obtained numerically. To compliment these values the constants of proportionality between the turbulent viscosity and the height were determined using different methodologies including analysis of experimental data, computational fluid dynamics and numerical considerations. Evaluation of the results is primarily carried out by comparison to experimentally determined profiles of the temperature and velocity that are found in the literature. The best agreement was obtained when the Reynolds analogy—giving the turbulent Prandtl number as unity—was adopted. While the range of validity of the power series is limited, its radius of convergence can be extended using a suitable transformation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Zeldovich, Y.B., The Asymptotic Laws of Freely Ascending Convective Flows, Zh. Eksp. Teor. Fiz., 1937, vol. 7, no. 12, pp. 1463–1465.

    Google Scholar 

  2. 2.

    Schmidt, W., Turbulente Ausbreitung eines Stromes Erhitzter luft I, ZAMM-Z. Angew. Math. Me., 1941, vol. 21, no. 5, pp. 265–278.

    Article  Google Scholar 

  3. 3.

    Schmidt, W., Turbulente Ausbreitung eines Stromes Erhitzter luft II, ZAMM-Z. Angew. Math. Me., 1941, vol. 21, no. 6, pp. 351–363.

    Article  MATH  Google Scholar 

  4. 4.

    Prandtl, L., Berichtüber Untersuchungen zur Ausgebildeten Turbulenz, ZAMM-Z. Angew. Math. Me., 1925, vol. 5, no. 2, pp. 136–139.

    MATH  Google Scholar 

  5. 5.

    Taylor, G.I., The Transport of Vorticity and Heat through Fluids in Turbulent Motion, P. Roy. Soc. Lond. A Mat., 1932, vol. 135, no. 828, pp. 685–702.

    ADS  Article  Google Scholar 

  6. 6.

    Fage, A. and Falkner, V.M., Notes on Experiments on the Temperature and Velocity in theWake of a Heated Cylindrical Obstacle. Appendix, P. Roy. Soc. Lond. A Mat., 1932, vol. 135, no. 825, pp. 702–705.

    ADS  Article  Google Scholar 

  7. 7.

    Rouse, H., Yih, C.S., and Humphreys, H.W., Gravitational Convection from a Boundary Source, Tellus, 1952, vol. 4, no. 3, pp. 201–210.

    ADS  Article  Google Scholar 

  8. 8.

    Shabbir, A. and George, W.K., Experiments on a Round Turbulent Buoyant Plume, J. Fluid Mech., 1994, vol. 275, no. 1, pp. 1–32.

    ADS  Article  Google Scholar 

  9. 9.

    Batchelor, G.K., Heat Convection and Buoyancy Effects in Fluids, Q. J. Roy. Meteor. Soc., 1954, vol. 80, no. 345, pp. 339–358.

    ADS  Article  Google Scholar 

  10. 10.

    Morton, B.R., Taylor, G., and Turner, J.S., Turbulent Gravitational Convection from Maintained and Instantaneous Sources, P. Roy. Soc. Lond. A Mat., 1956, vol. 234, no. 1196, pp. 1–23.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Hunt, G.R. and van den Bremer, T.S., Classical Plume Theory: 1937–2010 and beyond, IMA J. Appl. Math., 2011, vol. 76, no. 3, pp. 424–448.

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Rao, V.K., The Buoyant Plume above a Heat Source, Atmos. Environ. (1967), 1970, vol. 4, no. 5, pp. 557–575.

    Article  Google Scholar 

  13. 13.

    Schlicting, H., Boundary Layer Theory, 7th ed., London: McGraw-Hill, 1979, pp. 579–585.

    Google Scholar 

  14. 14.

    Yih, C.S., Turbulent Buoyant Plumes, Phys. Fluids, 1977, vol. 20, no. 8, pp. 1234–1237.

    ADS  Article  Google Scholar 

  15. 15.

    Yih, C.S. and Wu, F., Round Buoyant Laminar and Turbulent Plumes, Phys. Fluids, 1981, vol. 24, no. 5, pp. 794–801.

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Baker, C.B., An Analysis of the Turbulent Buoyant Jet, Ph.D. thesis, Pennsylvanian State Univ., Pennsylvania, 1980.

    Google Scholar 

  17. 17.

    Beuther, P.D., Experimental Investigation of the Turbulent Buoyant Axisymmetric Plume, Ph.D. thesis, State Univ. of New York at Buffalo, New York, 1980.

    Google Scholar 

  18. 18.

    Tennekes, H. and Lumley, J.L., A First Course in Turbulence, Massachusetts: MIT Press, 1972.

    Google Scholar 

  19. 19.

    George, W.K., Jr., Alpert, R.L., and Tamanini, F., Turbulence Measurements in an Axisymmetric Buoyant Plume, Int. J. Heat Mass Transfer, 1977, vol. 20, no. 11, pp. 1145–1154.

    ADS  Article  Google Scholar 

  20. 20., Maxima, a Computer Algebra System, vers. 5.23.1,, 2011.

  21. 21.

    Beuther, P.D., Capp, S.P., and George, W.K., Jr., Momentum and Temperature Balance in Axisymmetric Turbulent Buoyant Plumes, ASME, paper 79-HT-42, 1979.

  22. 22.

    Farrugia, P.S. and Micallef, A., Turbulent Plumes Evolving in a Vertical Flow under a Mixed Convection Regime, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 7/8, pp. 1931–1940.

    Article  Google Scholar 

  23. 23.

    Fujii, T., Theory of the Steady Laminar Natural Convection above a Horizontal Line Heat Source and a Point Heat Source, Int. J. Heat Mass Transfer, 1963, vol. 6, no. 7, pp. 597–606.

    Article  Google Scholar 

  24. 24.

    Qian, J., Turbulent Prandtl Number, Sci. China Ser. A, 1994, vol. 37, no. 11, pp. 1347–1353.

    Google Scholar 

  25. 25.

    Cortesi, A.B., Smith, B.L., Yadigarosglu, G., and Banerjee, S., Numerical Investigation of the Entrainment and Mixing Processes in Neutral and Stably-Stratified Mixing Layers, Phys. Fluids, 1999, vol. 11, no. 1, pp. 162–185.

    ADS  Article  MATH  Google Scholar 

  26. 26.

    Van Dyke, M., Perturbation Methods in Fluid Mechanics, California: The Parabolic Press, 1975, chaps. 3 and 10.

    MATH  Google Scholar 

  27. 27.

    Domb, C. and Sykes, M.F., On the Susceptibility of a Ferromagnetic above the Curie Point, P. Roy. Soc. Lond. A Mat., 1957, vol. 240, no. 1221, pp. 214–228.

    ADS  Article  MATH  Google Scholar 

  28. 28.

    Wolfram Research, Inc., Mathematica, vers. 7.0., Wolfram Research, Champaign, Illinois, 2008.

    Google Scholar 

  29. 29.

    George, W.K., Governing Equations, iExperiments, and the Experimentalist, Exp. Therm. Fluid. Sci., 1990, vol. 3, no. 6, pp. 557–566.

    Article  Google Scholar 

  30. 30.

    Kotsovinos, N.E., A Study of the Entrainment and Turbulence in a Plane Buoyant Jet, Ph.D. thesis, California Institute of Technology, Pasadena, 1975.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. S. Farrugia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farrugia, P.S., Micallef, A. Series solutions for turbulent plumes evolving in a natural environment. J. Engin. Thermophys. 23, 236–255 (2014).

Download citation


  • Closed Form Solution
  • Series Solution
  • Line Source
  • Temperature Excess