Skip to main content

The advanced steam and gas technology

Abstract

One of the directions of creating advanced gas and steam power units is usage of new working substances (freons) in the steam turbine stage. This paper presents the authors’ method for estimation (which is the scientific novelty) and results of calculating the efficiency and design-layout parameters of assemblies of a steamand gas power unit (SGU)with the freon technology. It is shown that the use of freons with supercritical parameters in SGU makes it possible to obtain efficiency on a level of 58% and apply more compact (compared to conventional) turbines and once-through recovery boilers, and a regenerator and condenser whose design-layout parameters are comparable with similar conventional designs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kutateladze, S.S. and Rozenfeld, L.M., Patent 941517/24, 1965.

  2. 2.

    Mitsui, T., Ito, F., Seya, Y., and Nakamoto, Y., Outline of the 100 kW OTEC Pilot Plant in the Republic of Nauru, IEEE Trans. Power Apparatus Syst., 1983, vol. PAS-102(9), pp. 3167–3171.

    Article  Google Scholar 

  3. 3.

    Peppink, G., Integration of an ORC in a Steam and Gas Turbine Unit (Stag Unit) with and without Facilities for District Heating, ORC-HP Technol., pp. 439–456, Dusseldorf: VDI Venag, 1984.

    Google Scholar 

  4. 4.

    Ogurechnikov, L.A., Combined Electrical and Thermal Energy Generation at a Low-Temperature Binary Power Plant, Int. J. Altern. Energ. Ekol., 2007, no. 5, pp. 68–72.

    Google Scholar 

  5. 5.

    Moskvicheva, V.N. and Petin, Yu.M., Ispol’zovanie freonov v energeticheskikh ustanovkakh (Usage of Freons at Power Units), Novosibirsk: Inst. Thermophys., Sib. Br., USSR Acad. Sci., 1973, pp. 4–27.

    Google Scholar 

  6. 6.

    Kuryanov, A.A., Efficiency of SGU with Freon Steam Turbine Stage, in Energetika i teplotekhnika (Power and Heat Engineering), Nakoryakov, V.E., Ed., Novosibirsk, NGTU, 2011, iss. 16, pp. 73–79.

    Google Scholar 

  7. 7.

    Kostyuk, A.G. and Frolov, V.V., Turbiny teplovykh i atomnykh elektricheskikh stantsii (Turbines of Heat and Nuclear Power Plants), Moscow: MEI, 2001.

    Google Scholar 

  8. 8.

    Shchinnikov, P.A., Nozdrenko, G.V., Tomilov, V.G., et al., Kompleksnye issledovaniya TES s novymi tekhnologiyami (Complex Investigations of Heat Power Plants with New Technologies), Novosibirsk: NGTU, 2005.

    Google Scholar 

  9. 9.

    Tsvetkov, O.B. and Laptev, Yu.A., Thermophysical Aspects of Ecological Problems in State-of-the-Art Refrigerating Engineering, Materialy 10i Ross. konf. po teplofizicheskim svoistvam veshchestv (Proc. 10th Russian Conf. on Thermophysical Properties of Substances), Kazan, Chemistry and Computer Modeling, Butler’s Reports, 2002, no. 10, pp. 74–78.

    Google Scholar 

  10. 10.

    Badylkes, I.S., Obobshchennyi metod rascheta termodinamicheskikh svoistv kholodilnikh agentov (Generalized Method for Calculating Thermodynamic Properties of Refrigerants), Moscow: Gostorgizdat, 1963.

    Google Scholar 

  11. 11.

    Altunin, V.V., Method for Writing the Equation of Real Gas State by a Limited Quantity of Initial Experimental Data, Teploenerg., 1962, no. 3, pp. 72–78.

    Google Scholar 

  12. 12.

    Altunin, V.V., Method for Calculating Thermodynamic Properties of Real Gas Mixtures by a Limited Quantity of Initial Experimental Data, Teploenerg., 1963, no. 4, pp. 78–84.

    Google Scholar 

  13. 13.

    Altunin, V.V., Geller, V.Z., Kremenevskaya, E.A., Perelshtein, I.I., and Petrov, E.K., Teplofizicheskie svoistva freonov (Thermophysical Properties of Freons), Rivkin, S.L., Ed., Moscow: Izd. Standartov, 1985.

  14. 14.

    Nozdrenko, G.V., Approximate Estimate of Heat Transfer to Freons of Supercritical Parameters, Inzhenerno-Fiz. Zh., 1968, vol. 14, no. 6, pp. 1091–1095.

    Google Scholar 

  15. 15.

    Nozdrenko, G.V., Shchinnikov, P.A., and Borodikhin, I.V., Application of the Computer Complex ORTES for Technical and Economic Investigations of Thermal Power Plant, Nauch. Vestnik NGTU, 2005, no. 1(19), pp. 51–62.

    Google Scholar 

  16. 16.

    Shchinnikov, P.A., Nozdrenko, G.V., Serant, F.A., and Zykova, N.G., Layout-Parameter Optimization of Boilers at Thermal Power Plant with Circular Combustor, Teplofiz. Aeromech., 2003, vol. 10, no. 3, pp. 477–483.

    Google Scholar 

  17. 17.

    Shchinnikov, P.A., Nozdrenko, G.V., Grigoryeva, O.K., Borush, O.V., and Kuzmin, A.G., Complex Analysis of Steam and Gas Thermal Power Plants, Probl. Energet., 2010, nos. 3/4, pp. 33–40.

    Google Scholar 

  18. 18.

    Ol’khovskii, G.G., Prospects of Thermal Power Plants, Elektr. Stantsii, 2010, no. 1, pp. 8–17.

    Google Scholar 

  19. 19.

    Ol’khovskii, G.G., Gas-Turbine and Steam-Gas Units in Abroad, Teploenerg., 1999, no. 1, pp. 71–80.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. V. Nozdrenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shchinnikov, P.A., Nozdrenko, G.V., Grigoryeva, O.K. et al. The advanced steam and gas technology. J. Engin. Thermophys. 23, 229–235 (2014). https://doi.org/10.1134/S1810232814030060

Download citation

Keywords

  • Steam
  • Thermal Power Plant
  • Engineer THERMOPHYSICS
  • Supercritical Parameter
  • Calculate Thermodynamic Property