Skip to main content

Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation

Abstract

A numerical study of the boundary layer flow past unsteady stretching surface in nanofluid under the effects of suction and viscous dissipation is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented, which depends on the unsteadiness parameter A, Eckert number Ec, ζ suction or injection parameter, Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt. The governing partial differential equations were converted to nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with the previously published work, and the results are found to be in excellent agreement. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters on thermal and nanoparticle volume fraction boundary layers. The thermal boundary layer thickens with a rise in the local temperature as the Brownianmotion, thermophoresis, and convective heating each intensify.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sakiadis, B.C., Boundary Layer Behavior on Continuous Solid Surfaces: I. Boundary Layer Equations for Two-Dimensional and Axisymmetric Flow, AIChE J., 1961, vol. 7, pp. 26–28.

    Article  Google Scholar 

  2. 2.

    Sakiadis, B.C., Boundary Layer Behavior on Continuous Solid Surfaces: II. The Boundary Layer on a Continuous Flat Surface, AIChE J., 1961, vol. 7, pp. 221–225.

    Article  Google Scholar 

  3. 3.

    Erickson, L.E., Fan, L.T., and Fox, V.G., Heat and Mass Transfer on Moving Continuous Flat Plate with Suction or Injection, Ind. Eng. Chem. Fund., 1966, vol. 5, pp. 19–25.

    Article  Google Scholar 

  4. 4.

    Crane, L.J., Flows past a Stretching Plate, Z. Angew. Math. Phys. (ZAMP), 1970, vol. 21, pp. 645–647.

    Article  Google Scholar 

  5. 5.

    Gupta, P.S. and Gupta, A.S., Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, Can. J. Chem. Eng., 1977, vol. 55, pp. 744–746.

    Article  Google Scholar 

  6. 6.

    Grubka, L.J. and Bobba, K.M., Heat Transfer Characteristics of a Continuous, Stretching Surface with Variable Temperature, ASME J. Heat Transfer, 1985, vol. 107, pp. 248–250.

    Article  Google Scholar 

  7. 7.

    Andersson, H.I., MHD Flow of a Viscoelastic Fluid past a Stretching Surface, Acta Mech., 1992, vol. 95, pp. 47–54.

    Article  Google Scholar 

  8. 8.

    Vajravelu, K. and Nayfeh, J., Convective Heat Transfer at a Stretching Sheet, Acta Mech., 1993, vol. 96, pp. 1227–1235.

    Article  Google Scholar 

  9. 9.

    Ali, M.E., Heat Transfer Characteristics of a Continuous Stretching Surface, Wärme-Stoffübertrag, 1994, vol. 29, pp. 227–234

    ADS  Article  Google Scholar 

  10. 10.

    Nazar, R., Amin, N., and Pop, I., Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet, Int. J. Non-Lin.Mech., 2004, vol. 39, pp. 1227–1235.

    Article  MATH  Google Scholar 

  11. 11.

    Ishak, A., Nazar, R., and Pop, I., Mixed Convection Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet, Meccanica, 2008, vol. 43, pp. 411–418.

    Article  MATH  Google Scholar 

  12. 12.

    Pal, D., Heat and Mass Transfer in Stagnation-Point Flow towards a Stretching Surface in the Presence of Buoyancy Force and Thermal Radiation, Meccanica, 2009, vol. 44, pp. 145–158.

    Article  MATH  Google Scholar 

  13. 13.

    Hsiao, K-L., Heat and Mass Transfer for Micropolar Flow with Radiation Effect past a Nonlinearly Stretching Sheet, Heat Mass Transfer, 2010, vol. 46, pp. 413–419.

    ADS  Article  Google Scholar 

  14. 14.

    Rahman, M.M. and Al-Lawatia, M., Effects of Higher Order Chemical Reaction on Micropolar Fluid Flow on a Power Law Permeable Stretched Sheet with Variable Concentration in a Porous Medium, Can. J. Chem. Eng., 2010, vol. 88, pp. 23–32.

    Article  Google Scholar 

  15. 15.

    Nandeppanavar, M.M., Abel, M.S., and Tawade, J., Heat Transfer in a Walter’s Liquid B Fluid over an Impermeable Stretching Sheet with Non-Uniform Heat Source/Sink and Elastic Deformation, Comm. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 1791–1802.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Afify, A.A. and Elgazery, N.S., LieGroup Analysis for the Effects of Chemical Reaction on MHD Stagnation-Point Flow of Heat and Mass Transfer towards a Heated Porous Stretching Sheet with Suction or Injection, Nonlin. Anal., Model. Control, 2012, vol. 17, pp. 1–15.

    MathSciNet  Google Scholar 

  17. 17.

    Elbashbeshy, E.M.A. and Bazid, M.A.A., Heat Transfer over an Unsteady Stretching Surface, Heat Mass Transfer, 2004, vol. 41, pp. 1–4.

    ADS  Google Scholar 

  18. 18.

    Ishak, A., Nazar, R., and Pop, I., Heat Transfer over an Unsteady Stretching Permeable Surface with Prescribed Wall Temperature, Nonlin. Anal., Real World Appl., 2009, vol. 10, pp. 2909–2913.

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Mukhopadhyay, S., Effect of Thermal Radiation on Unsteady Mixed Convection Flow and Heat Transfer over a Porous Stretching Surface in Porous Medium, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 3261–3265.

    Article  MATH  Google Scholar 

  20. 20.

    Fang, T., Lee, Chia-fon F., and Zhang, Ji, The Boundary Layers of an Unsteady Incompressible Stagnation-Point Flow with Mass Transfer, Int. J. Non-Lin. Mech., 2011, vol. 46, pp. 942–948

    Article  Google Scholar 

  21. 21.

    Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transfer, 2006, vol. 128, pp. 240–50.

    Article  Google Scholar 

  22. 22.

    Kuznetsov, A.V. and Nield, D.A., Natural Convection Boundary-Layer of a Nanofluid past a Vertical Plate, Int. J. Them. Sci., 2010, vol. 49, pp. 243–247.

    Article  Google Scholar 

  23. 23.

    Nield, D.A. and Kuznetsov, A.V., The Cheng-Minkowycz Problem for Natural Convection Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluids, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 5792–5.

    Article  MATH  Google Scholar 

  24. 24.

    Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and Wang, H.P., Eds., ASME FED, 1995, vol. 231/MD vol. 66, pp. 99–105.

    Google Scholar 

  25. 25.

    Das, S.K., Choi, S., Yu, W., and Pradeep, T., Nanofluids: Science and Technology, New Jersey: Wiley Interscience, 2007.

    Book  Google Scholar 

  26. 26.

    Eastman, J., Choi, S.U.S., Lib, S., Yu, W., and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene-Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, vol. 78, pp. 718–720.

    ADS  Article  Google Scholar 

  27. 27.

    Buongiorno, J. and Hu, W., Nanofluid Coolants for Advanced Nuclear Power Plants, Proc. ICAPP’05, Seoul 705, 2005, pp. 15–19.

    Google Scholar 

  28. 28.

    Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., 2008, vol. 29, pp. 432–460.

    ADS  Article  Google Scholar 

  29. 29.

    Murshed, S.M.S., Leong, K.C., and Yang, C., Thermophysical and Electrokinetic Properties of Nanofluids-A Critical Review, Appl. Therm. Eng., 2008, vol. 28, nos. 17/18, pp. 2109–2125.

    Article  Google Scholar 

  30. 30.

    Hamad, M.A.A. and Ferdows, M., Similarity Solution of Boundary Layer Stagnation-Point Flow towards a Heated Porous Stretching Sheet Saturated with a Nanofluid with Heat Absorption/Generation and Suction/Blowing: A Lie Group Analysis, Comm. Nonlin. Sci. Numer. Simul., 2011 (accepted).

    Google Scholar 

  31. 31.

    Hamad, M.A.A. and Ferdows, M., On Similarity Solution to the Viscous Flow of Heat Transfer of Nanofluid over Nonlinearly Stretching Sheet, Math.Model. Anal., Manuscript ID: TMMA-(2011), 0104 (accepted).

    Google Scholar 

  32. 32.

    Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York: Dover, 1965.

    Google Scholar 

  33. 33.

    Grubka, L.J. and Bobba, K.M., Heat Transfer Characteristics of a Continuous, Stretching Surface with Variable Temperature, ASME J. Heat Transfer, 1985, vol. 107, pp. 248–250.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ferdows.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferdows, M., Chapal, S.M. & Afify, A.A. Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation. J. Engin. Thermophys. 23, 216–228 (2014). https://doi.org/10.1134/S1810232814030059

Download citation

Keywords

  • Heat Transfer
  • Nusselt Number
  • Sherwood Number
  • Lewis Number
  • Engineer THERMOPHYSICS