Skip to main content

Dynamics of transient processes at liquid boiling-up in the conditions of free convection and forced flow in a channel under nonstationary heat release

Abstract

Results on experimental investigation of the dynamics of boiling-up at stepwise heat release on a horizontally oriented cylindrical surface in a large volume of freon-21 are presented. Experimental data on the propagation velocity, structure, and other local characteristics of development of self-sustained evaporation fronts at different temperature differences of boiling-up in saturated liquid were obtained. New experimental results on the dynamics of vapor phase incipience and evolution on the surface of a vertical heat releasing tube and on the dynamics of changing the heater temperature and pressure in a flow of liquid (water, ethanol) subcooled to saturation temperature in the channel under nonstationary heat release conditions are represented. It was revealed that the dependence of the expectation time of intense bubble growth on the water motion velocity is nonmonotonic.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Okuyama, K., Takehara, R., Iida, Y., and Kim J., Pumping Action by Boiling Propagation in aMicrochannel, Microscale Thermophys. Eng., 2005, vol. 9, no. 2, pp. 119–135.

    Article  Google Scholar 

  2. 2.

    Huai, X., Wang, G., Jin, R., Yin, T., and Zou, Y., Microscopic Explosive Boiling Induced by a Pulsed-Laser Irradiation, Heat Mass Transfer, 2008, vol. 45, pp. 117–126.

    ADS  Article  Google Scholar 

  3. 3.

    Al’tov, V.A., Zenkevich, V.B., Kremlev, M.G., and Sychev, V.V., Stabilization of Superconducting Magnetic Systems, 3th ed., Moscow: Izd. DomMEI, 2008.

    Google Scholar 

  4. 4.

    Shepherd, J.E. and Sturtevant, B., Rapid Evaporation at the Superheat Limit, J. FluidMech., 1982, vol. 121, pp. 379–402

    ADS  Article  Google Scholar 

  5. 5.

    Tsukamoto, O. and Uyemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryog. Eng., 1980, vol. 25, pp. 476–482.

    Google Scholar 

  6. 6.

    Frost, D.L., Dynamics of Explosive Boiling of a Droplet, Phys. Fluid, 1988, vol. 31, no. 9, pp. 2554–2561.

    ADS  Article  Google Scholar 

  7. 7.

    Pavlenko, A.N. and Chekhovich, V.Yu., CriticalHeat Flux at TransientHeatGeneration, Izv. Sib.Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk, 1990, vol. 2, pp. 3–9.

    Google Scholar 

  8. 8.

    Pavlenko, A.N. and Chekhovich, V.Yu., Heat Transfer Crisis at Transient Heat Release, Russ. J. Eng. Thermophys., 1991, vol. 1, no. 1, pp. 73–92.

    Google Scholar 

  9. 9.

    Fauser, J. and Mitrovic, J., Propagation of Boiling Fronts in Superheated Liquids, Proc. II Conf. on Convective Flow and Pool Boiling, Irsee, Germany, 1997.

    Google Scholar 

  10. 10.

    Theofanous, T.G. and Yuen, W.W., Fundamentals of Boiling and Multiphase Flow under Extreme Conditions, Heat Transfer 1998, Proc. 11th IHTC, Kyongju, Korea, vol. 1, pp. 131–147.

  11. 11.

    Fauser, J. and Mitrovic, J., Some Features of Boiling Fronts on Heated Surfaces, Heat Transfer 1998, Proc. 11th IHTC, Kyongju, Korea, vol. 2, pp. 377–382.

  12. 12.

    Okuyama, K., Iida, Y., Sasaki, H., and Kim, J., Vapor Generation and Collapse Behavior on a Fine Wire Subjected to Pulse Heating (Experimental Results for a Wide Range of Heating Rates), Thermal Sci. Eng., 1999, vol. 7, no. 4, pp. 37–43.

    Google Scholar 

  13. 13.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Heat Transfer Crisis in Water at Stepwise Power Generation, Thermophys. Aeromech., 1999, vol. 6, no. 2, pp. 251–259.

    Google Scholar 

  14. 14.

    Wang, J., Preliminary Analysis of Rapid Boiling Heat Transfer, Int. Comm. Heat and Mass Transfer, 2000, vol. 27, pp. 377–388

    Article  Google Scholar 

  15. 15.

    Moloshnikov, A.S. and Shmal, I.I., Two Regimes of Superheated Liquid Boiling on a Wire, High Temp., 2000, vol. 38, no. 1, pp. 57–60.

    Article  Google Scholar 

  16. 16.

    Mitrovic, J. and Fauser, J., Propagating of Boiling Fronts along Horizontally Arranged Heated Tubes, Trans. Inst. Chem. Eng., 2001, vol. 79,part A, pp. 363–370.

    Article  Google Scholar 

  17. 17.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Third Heat Transfer Crisis with Stepwise Heat Supply, J. Appl. Mech. Techn. Phys., 2001, vol. 42, no. 5, pp. 857–863.

    ADS  Article  Google Scholar 

  18. 18.

    Obuhov, S.G., Drulis, V.N., Egoshin, E.A., and Obuhov, D.S., Nonstationary Nucleate Boiling Crisis at Electro-Regulation of Thermal Loading, J. Eng. Phys. Thermophys., 2002, vol. 78, no. 6, pp. 126–130.

    Google Scholar 

  19. 19.

    Glod, S., Poulikakos, D., Zhao, Z., and Yadigarogly, G., An Investigation of Microscale Explosive Vaporization of Water on an Ultrathin Pt Wire, Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 367–379.

    Article  Google Scholar 

  20. 20.

    Theofanous, T.G., Tu, J.P., Dinh, A.T., and Dinh, T.N., The Boiling Crisis Phenomenon, J. Exp. Thermal Fluid Sci., 2002, vol. 26, part I, pp. 775–792; part II, pp. 793–810.

    Article  Google Scholar 

  21. 21.

    Pavlenko, A.N., Transitional Processes and Crisis Phenomena in Boiling of Cryogenic Liquids, Selected Transactions of NATO Advanced Study Institute, Mathematics, Physics and Chemistry, Nato Science Series, Netherlands: Kluwer, 2003, vol. 99, pp. 145–164.

    Google Scholar 

  22. 22.

    Deev, V.I., Kharitonov, V.S., Kutsenko, K.V., and Lavrukhin, A.A., Transient Boiling Crisis of Cryogenic Liquids, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 25, pp. 5477–5482.

    Article  MATH  Google Scholar 

  23. 23.

    Duluc, M., Stutz, B., and Lallemand, M., Transient Nucleate Boiling under Stepwise Heat Generation for Highly Wetting Fluids, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 25, pp. 5541–5553.

    Article  Google Scholar 

  24. 24.

    Dong, Z., Huai, X., and Liu, D., Experimental Study on the Explosive Boiling in Saturated Liquid Nitrogen, Progress Nat. Sci., 2005, vol. 15, pp. 61–65.

    Article  Google Scholar 

  25. 25.

    Theofanous, T.G. and Dinh, T.N., High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities, Multiphase Sci. Technol., 2006, vol. 18, no. 1, pp. 1–26.

    Article  Google Scholar 

  26. 26.

    Okuyama, K., Kim, J., Mori, S., and Iida, Y., Boiling Propagation of Water on a Smooth Film Heater Surface, Int. J. Heat Mass Transfer, 2006, vol. 49,iss. 13/14, pp. 2207–2214.

    Article  Google Scholar 

  27. 27.

    Pavlenko, A.N. and Chekhovich, V.Yu., Interconnection between Dynamics of Liquid Boiling-up and Heat Transfer Crisis for Nonstationary Heat Release, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 175–187.

    Article  Google Scholar 

  28. 28.

    Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Films of Liquid under Conditions of Unsteady-State Heat Release, High Temp., 2007, vol. 45, no. 6, pp. 905–916.

    Article  Google Scholar 

  29. 29.

    Surtaev, A.S. and Pavlenko, A.N., Development of Crisis Phenomena in Falling Wavy Liquid Films at Nonstationary Heat Release, Microgravity Sci. Technol., 2010, vol. 22,iss. 2, pp. 215–221.

    Google Scholar 

  30. 30.

    Pavlenko, A.N., Surtaev, A.S., Starodubtseva, I.P., Volodin, O.A., Chernyavskiy, A.N., Tsoy, A.N., and Pyatkov, A.S., Decay of Falling Wavy Liquid Films at Nonstationary Heat Release, Proc. 14th Int. Heat Transfer Conf. (IHTC-14), Washington, USA, 8–13 August, 2010, IHTC 2010-22174.

  31. 31.

    Deev, V.I., Kutsenko, K.V., Lavrukhin, A.A., and Kharitonov, V.S., Influence of Initial Heat Generation on Dynamic Characteristics of Transient Boiling Crisis of Water, Int. J. Heat Mass Transfer, 2010.

    Google Scholar 

  32. 32.

    Kozulin, I.A. and Kuznetsov, V.V., Explosive Vaporization of a Water Layer on a Flat Microheater, J. Eng. Therm., 2010, vol. 19, no. 2, pp. 102–109.

    Article  Google Scholar 

  33. 33.

    Kuznetsov, V.V., Oreshkin, V.I., Zhigalin, A.S., Kozulin, I.A., Chaikovsky, S.A., and Rousskikh, A.G., Metastable States and Their Disintegration at Pulse Liquid Heating and Electrical Explosion of Conductors, J. Eng. Therm., 2011, vol. 20, no. 3, pp. 240–248.

    Article  Google Scholar 

  34. 34.

    Pavlenko, A.N., Koverda, V.P., Reshetnikov, A.V., Surtaev, A.S., Tsoi, A.N., Mazheiko, N.A., Busov, K.A., and Skokov, V. N., Disintegration of Flows of Superheated Liquid Films and Jets, J. Eng. Therm., 2013, vol. 22, no. 3, pp. 174–193.

    Article  Google Scholar 

  35. 35.

    Zhukov, V.I. and Pavlenko, A.N., Critical Effects at Evaporation in a Thin Liquid Layer under Reduced Pressure, J. Eng. Therm., 2013, vol. 22, no. 4, pp. 257–287.

    Article  Google Scholar 

  36. 36.

    Surtaev, A., Pavlenko, A., and Tsoi, A., Development of Heat Transfer at Boiling and Crisis Phenomena in Falling Liquid Film at Stepwise Heat Generation, Proc. 8th World Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics (ExHFT-8), Lisbon, Portugal, 2013.

    Google Scholar 

  37. 37.

    Pavlenko, A.N., Surtaev, A.S., and Tsoi, A.N., Transitional Processes and Crisis Phenomena Development at Boiling in Falling Liquid Film at Stepwise Heat Generation, Proc. 2nd Int. Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, Xi’an, China, Report IWHT2013-008, 2013.

    Google Scholar 

  38. 38.

    Chernyavskii, A.N. and Pavlenko, A.N., Determination of Expectation Time of Boiling in Falling Liquid Films at Nonstationary Heat Release, Vestnik NGU, Phys., 2013, vol. 8, pp. 40–48.

    Google Scholar 

  39. 39.

    Borishanskiy, V.M. and Fokin, B.S., Onset of Heat-Transfer Crisis with Unsteady Increase in Heat Flux, Heat Transfer, Sov. Res., 1969, vol. 1, no. 5, pp. 1–55.

    Google Scholar 

  40. 40.

    Sinha, D.N., Brodie, L.C., Semura, J.S., and Young, F.M., Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen, Cryog., 1979, vol. 19, pp. 225–229.

    ADS  Article  Google Scholar 

  41. 41.

    Tsukamoto, O. and Uemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryog. Eng., 1980, vol. 25, pp. 476–482.

    Google Scholar 

  42. 42.

    Okuyama, K., Kozawa, Y., and Inoue, A., Transient Boiling Heat Transfer Characteristics of R 113 at Large Stepwise Heat Generation, Int. J. Heat Mass Transfer, 1988, vol. 31, no. 10, pp. 2161–2174.

    Article  Google Scholar 

  43. 43.

    Pavlenko, A.N., Transient Critical Heat Flux in Liquid at Different Fixing Laws of Heat Generation, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk, 1990, vol. 2, pp. 131–137.

    Google Scholar 

  44. 44.

    Okuyama, K. and Iida, Y., Transient Boiling Heat Transfer Characteristics of Nitrogen (Bubble Behavior and Heat Transfer Rate at Stepwise Heat Generation), Int. J. Heat Mass Transfer, 1990, vol. 33, pp. 2065–2071.

    Article  Google Scholar 

  45. 45.

    Terner, E., Shork Tube Experiments Involving Phase Changes, Ind. Engng. Chem. Process Des. Devel., 1962, vol. 1, no. 2, pp. 84–89.

    Article  Google Scholar 

  46. 46.

    Gromles, M.A. and Fauske, H.K., Axial Propagation of Free Surface Boiling into Superheated Liquids in Vertical Tubes, Proc. Fifth Int. Heat Transfer Conf., London, 1974, vol. 4, pp. 30–34.

    Google Scholar 

  47. 47.

    Shuravenko, N.A., Isaev, O.A., and Skripov, V.P., Explosive Incipience of Superheated Liquid upon Exhaustion through Short Pipes, Teplofiz. Vys. Temp., 1975, vol. 13, no. 4, pp. 896–898.

    Google Scholar 

  48. 48.

    Borkar, G.S., Lienhard, J.H., and Trela, M.A., Rapid Hot-Water Depressurization Experiment, Report EPRI NP-527, Project RP687-1, 1977.

    Google Scholar 

  49. 49.

    Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Critical Flow-Rates of a Boiling Liquid and a Condensing Gas in a Nonequilibrium Discharge Regime, High Temp., 1988, vol. 26, no. 3, pp. 405–409.

    Google Scholar 

  50. 50.

    Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Flow-Rate of Boiling Liquid on Issuing into Atmosphere-Conversion from Model Material to Water, High Temp., 1988, vol. 26, no. 4, pp. 598–601.

    Google Scholar 

  51. 51.

    Wildgen, A. and Straub, J., The Boiling Mechanism in Superheated Free Jets, Int. J. Multiphase Flow, 1989, vol. 15, no. 2, pp. 193–207.

    Article  Google Scholar 

  52. 52.

    Bartak, J.A., Study of the Rapid Depressurization of Hot Water and the Dynamics of Vapor Bubble Generation in Superheated Liquid, Int. J. Multiphase Flow, 1990, vol. 16, pp. 789–798.

    Article  MATH  Google Scholar 

  53. 53.

    Kurschat, Th., Chaves, H., and Meier, G.E.A., Complete Adiabatic Evaporation of Highly Superheated Liquid Jets, J. Fluid Mech., 1992, vol. 236, pp. 43–59.

    ADS  Article  Google Scholar 

  54. 54.

    Bilicki, Z., Mathematical Model of Rapid Depressurization with Evaporation of a Liquid, Proc. Second Int. Conf. on Heat Transfer and Transport Phenomena in Multiphase Systems, Kielce, Poland, 1999, pp. 35–44.

    Google Scholar 

  55. 55.

    Aamir, M.F. and Watkins, A.P., Numerical Analysis of Depressurization of Highly Pressurized Liquid Propane, Int. J. Heat and Fluid Flow, 2000, no. 21, pp. 420–431.

    Google Scholar 

  56. 56.

    Reshetnikov, A.V., Mazheiko, N.A., and Skripov, V.P., Jets of Incipient Liquids, J. Appl.Mech. Techn. Phys., 2000, no. 41, pp. 491–497.

    Google Scholar 

  57. 57.

    Reinke, P. and Yadigaroglu, G., Explosive Vaporization of Superheated Liquids by Boiling Fronts, Int. J. Multiphase Flow, 2001, vol. 27, no. 9, pp. 1487–1516.

    Article  MATH  Google Scholar 

  58. 58.

    Bohdal, T. and Kuczynski, W., Investigation of Boiling of Refrigerant Medium under Periodic Disturbance Conditions, Exp. Heat Transfer, 2005, vol. 18, pp. 135–151.

    ADS  Article  Google Scholar 

  59. 59.

    Reshetnikov, A.V., Mazheiko, N.A., Skokov, V.N., and Koverda, V.P., Noneqilibrium Phase Transitions in the Jet of Highly Superheated Liquid, High Temp., 2007, vol. 45, no. 6, pp. 268–274.

    Article  Google Scholar 

  60. 60.

    Bohdal, T. and Kuczynski, W., Boiling of Refrigerant under Periodic Disturbance Conditions, Proc. 5th Int. Conf. on Transport Phenomena in Multiphase Systems, vol. 2, Bialystok, Poland, 2008, pp. 1–8.

    Google Scholar 

  61. 61.

    Reshetnikov, A.V., Mazheiko, N.A., Vinogradov, A.V., Busov, K.A., and Koverda, V.P., Dynamic Characteristics of Boiling Jets and Superheated Water Solutions, Teploenergetika, 2010, no. 8, pp. 69–73.

    Google Scholar 

  62. 62.

    Reshetnikov, A.V., Mazheiko, N.A., Busov, K.A., Koverda, V.P., and Roenko, V.V., Crisis Phenomena in a Jet of Boiling Water Solutions, Trudy pyatoi Rossiiskoi natsional’noi konferentsii po teploobmenu (RNKT-5) (Proc. Fifth Russian National Conf. on Heat Transfer (RNCHT-5)), vol. 4, Moscow, 2010, pp. 153–156.

    Google Scholar 

  63. 63.

    Pavlenko, A.N., Surtaev, A.S., Zhukov, V.E., Koverda, V.P., Reshetnikov, A.V., and Mazheiko, N.A., Peculiarities of Superheated Liquid Discharging under Strong and Weak Nonequilibrium Conditions, J. Eng. Therm., 2010, vol. 19, no. 4, pp. 289–305.

    Article  Google Scholar 

  64. 64.

    Roenko, V.V., Usage of Superheated Water for Fire Fighting, Mir Bezopasn., 2004, no. 6, pp. 20–24.

    Google Scholar 

  65. 65.

    Clarke, H., Martinez-Herasme, A., Crookes, R., and Wen, D.S., Experimental Study of Jet Structure and Pressurization upon Liquid Nitrogen Injection into Water, Int. J. Multiphase Flow, 2010, vol. 36,iss. 11/12, pp. 940–949.

    Article  Google Scholar 

  66. 66.

    Simous-Moreira, J.R., Vieira, M.M., and Angelo, E., Highly Expanded Flashing Liquid Gets, J. Therm. Heat Transfer, 2002, vol. 16, no. 3, pp. 415–424.

    Article  Google Scholar 

  67. 67.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Evaporation Front and the Flashing Effect, Trudy 4-oi Rossiiskoi natsional’noi konferentsii po teploobmenu (RNKT) (Proc. Fourth Russian National Conf. on Heat Transfer (RNCHT)), vol. 4, Moscow, 2006, pp. 37–40.

    Google Scholar 

  68. 68.

    Polanco, G., Hold, A.E., and Munday, G., General Review of Flashing Jet Studies, J. Hazardous Materials, 2010, no. 173, pp. 2–18.

    Google Scholar 

  69. 69.

    Kuznetsov, V.V., Kozulin, I.A., and Vitovsky, O.V., Experimental Investigation of Adiabatic Evaporation Waves in Superheated Refrigerants, J. Eng. Therm., 2012, vol. 21, no. 2, pp. 136–143.

    Article  Google Scholar 

  70. 70.

    Avksentyuk, B.P., Non-Equilibrium Model of an Evaporation Front, Russ. J. Eng. Therm., 1995, vol. 5, pp. 1–8.

    Google Scholar 

  71. 71.

    Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Proc. Third Int. Conf. on Multiphase Flow, ICMF-98, no. 4, Lyon, France, Prod. by File M-www.filem.com., 1998, pp. 3–5.

    Google Scholar 

  72. 72.

    Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117.

    Google Scholar 

  73. 73.

    Aktershev, S.P. and Ovchinnikov, V.V., Model of Stationary Motion of Multiphase Surface in the Layer of Extremely Heated Liquid, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 47–55.

    Article  Google Scholar 

  74. 74.

    Pavlov, P.A. and Vinogradov, V.E., Dynamics of Vapor Film Formation upon Rapid Superheating of Liquid, High Temp., 2010, vol. 48, no. 5, pp. 683–690.

    Article  Google Scholar 

  75. 75.

    Aktershev, S.P. and Ovchinnikov, V.V., Modeling of the Vaporization Front on a Heater Surface, J. Eng. Therm., 2011, vol. 20, no. 2, pp. 77–88.

    Article  Google Scholar 

  76. 76.

    Syromyatnikov, S.N. and Pavlov P.A., Instability of Evaporating Surface, High Temp., 1998, vol. 36, no. 2, pp. 282–286.

    Google Scholar 

  77. 77.

    Sinkevich, O.A., Glazkov, V.V., Ivochkin, Yu.P., and Kireeva, A.N., Vapor Films under Influence of High Heat Fluxes: Nongravity Surface Waves and Film Explosive Disintegration, Int. J. Nonlinear Sci. Numer. Simul., 2013, vol. 14, no. 1, pp. 1–14.

    MathSciNet  Google Scholar 

  78. 78.

    Pavlenko, A.N., Zhukov, V.E., and Starodubtseva, I.P., Propagation of Self-Sustained Evaporation Fronts at Step-Wise Heat Generation and Crisis Phenomena at Pool Boiling, Comput. Thermal Sci., 2011, vol. 3, no. 5, pp. 1–8.

    Article  Google Scholar 

  79. 79.

    Pavlenko, A.N., Tairov, E.A., Zhukov, V.E., Levin, A.A., and Tsoi, A.N., Investigation of Transient Processes at Liquid Boiling under Nonstationary Heat Generation Conditions, J. Eng. Therm., 2011, vol. 20, no. 4, pp. 380–406.

    Article  Google Scholar 

  80. 80.

    Stakhanova, A.A., Varava, A.N., Dedov, A.V., and Komov, A.T., Studying Heat Transfer during Impulse Heating of Model Fragments of Fuel Rod Claddings, Thermal Eng., 2011, vol. 58, no. 7, pp. 602–609.

    ADS  Article  Google Scholar 

  81. 81.

    Pokusaev, B.G., Tairov, E.A., and Khudyakov, D.V., Dynamics of Pressure at Stepped Heat Release in a Channel with the Heat Transfer Carrier, High Temp., 1993, vol. 31, pp. 581–585.

    Google Scholar 

  82. 82.

    Zhukov, V.E., Pavlenko, A.N., Surtaev, A.S., and Moiseev, M.I., Boiling-up Dynamics and Crisis Phenomena at Stepped Heat Release under the Conditions of Free Convection in Freon-21, Proc. 5th Russian National Conf. on Heat Transfer (RNCHT-5), vol. 4, Moscow, 2010, pp. 84–87.

    Google Scholar 

  83. 83.

    Landau, L.D. and Lifshits, E.P., Mekhanika sploshnykh sred (Continuum Mechanics), Moscow: Gostekhizdat, 1944.

    Google Scholar 

  84. 84.

    Zhukov, V.E., Kuznetsov, D.V., Moiseev, M.I., and Bartashevich, M.V., Dynamics of Propagation of Self-Sustained Evaporation Front under Conditions of Normal and Microgravity, Modern Sci., 2013 (in press).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.N., Tairov, E.A., Zhukov, V.E. et al. Dynamics of transient processes at liquid boiling-up in the conditions of free convection and forced flow in a channel under nonstationary heat release. J. Engin. Thermophys. 23, 173–193 (2014). https://doi.org/10.1134/S1810232814030023

Download citation

Keywords

  • Front Velocity
  • Engineer THERMOPHYSICS
  • Superheated Liquid
  • Engineering THERMOPHYSICS
  • Evaporation Front