Skip to main content

Heat transfer effects on Hiemenz flow of nanofluid over a porous wedge sheet in the presence of suction/injection due to solar energy: Lie group transformation

Abstract

The objective of the present work is to investigate theoretically the Hiemenz flow and heat transfer of an incompressible viscous nanofluid past a porous wedge sheet in the presence of suction/injection due to solar energy (incident radiation). The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz. one-parameter group of transformation into a system of ordinary differential equations, which are solved numerically using Runge-Kutta-Gill based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by thermal radiation, nanoparticle volume fraction, and porosity of the sheet.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hunt, A.J., Small Particle Heat Exchangers, Lawrence Berkeley Laboratory Report no. LBL-7841, J. Renewable Sustainable Energy, 1978.

    Google Scholar 

  2. 2.

    Choi, S., Enhancing Thermal Conductivity of Fluids with Nanoparticle, in Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and Wang, H.P., Eds., ASME MD, 1995, vol. 231 and FED, 1995, vol. 66, pp. 99–105.

    Google Scholar 

  3. 3.

    Buongiorno, J. and Hu, W., Nanofluid Coolants for Advanced Nuclear Power Plants, Paper no. 5705, Proc. ICAPP’ 05, Seoul, 2005, pp. 15–19.

    Google Scholar 

  4. 4.

    Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transfer, 2006, vol. 128, pp. 240–250.

    Article  Google Scholar 

  5. 5.

    Kuznetsov, A.V. and Nield, D.A., Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate, Int. J. Therm. Sci., 2010, vol. 49, pp. 243–247.

    Article  Google Scholar 

  6. 6.

    Nield, D.A. and Kuznetsov, A.V., The Cheng-Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 5792–5795.

    Article  MATH  Google Scholar 

  7. 7.

    Cheng, P. and Minkowycz, W., Free Convection about a Vertical Flat Plate Embedded in a Porous Medium with Application to Heat Transfer from a Dike, J. Geophys. Res., 1977, vol. 82, pp. 2040–2044.

    ADS  Article  Google Scholar 

  8. 8.

    Birkoff, G., Mathematics for Engineers, J. Electr. Eng., 1948, vol. 67, p. 1185.

    Article  Google Scholar 

  9. 9.

    Birkoff, G., Hydrodynamics, New Jersey: Princeton University Press, 1960.

    Google Scholar 

  10. 10.

    Yurusoy, M. and Pakdemirli, M., Symmetry Reductions of Unsteady Three-Dimensional Boundary Layers of Some Non-Newtonian Fluids, Int. J. Eng. Sci., 1997, vol. 35, pp. 731–740.

    Article  MathSciNet  Google Scholar 

  11. 11.

    Yurusoy, M. and Pakdemirli, M., Exact Solutions of Boundary Layer Equations of a Special Non-Newtonian Fluid over a Stretching Sheet, Mech. Res. Comm., 1999, vol. 26, pp. 171–175.

    Article  Google Scholar 

  12. 12.

    Yurusoy, M., Pakdemirli, M., and Noyan, O.F., Lie Group Analysis of Creeping Flow of a Second Grade Fluid, Int. J. Non-Linear Mech., 2001, vol. 36, pp. 955–960.

    Article  MathSciNet  Google Scholar 

  13. 13.

    Chamkha, Ali. J. and Khaled, Abdul-Rahim, A., Similarity for Hydromagnetic Mixed Convection Heat and Mass Transfer for Hiemenz Flow through Porous Media, Int. J. Numer. Methods Heat Fluid Flow, 2000, vol. 10, pp. 94–115.

    Article  MATH  Google Scholar 

  14. 14.

    Seddeek, M.A., Darwish, A.A., and Abdelmeguid, M.S., Effects of Chemical Reaction and Variable Viscosity on Hydromagnetic Mixed Convection Heat and Mass Transfer for Hiemenz Flow through Porous Media with Radiation, Comm. Nonlin. Sci. Num. Simul., 2007, vol. 12, pp. 195–213.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Tsai, R. and Huang, J.S., Heat and Mass Transfer for Soret and Dufour’s Effects on Hiemenz Flow through Porous Medium onto a Stretching Surface, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 2399–2406.

    Article  MATH  Google Scholar 

  16. 16.

    Thermal-Diffusion and MHD for Soret and Dufour’s Effects on Hiemenz Flow and Mass Transfer of Fluid Flow through Porous Medium onto a Stretching Surface, Physica B, 2010, vol. 405, pp. 2560–2569.

  17. 17.

    K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, Dingler’s Polytechnic J., 1911, vol. 326, pp. 321–410.

    Google Scholar 

  18. 18.

    Yih, K.A., The Effect of Uniform Suction/Blowing on Heat Transfer of Magnetohydrodynamic Hiemenz Flow through Porous Media, Acta Mech., 1998, vol. 130, pp. 147–158.

    Article  MATH  Google Scholar 

  19. 19.

    Kafoussias, N.G. and Nanousis, N.D., Magnetohydrodynamic Laminar Boundary Layer Flow over a Wedge with Suction or Injection, Can. J. Phys., 1997, vol. 75, p. 733.

    ADS  Article  Google Scholar 

  20. 20.

    Anjali Devi, S.P. and Kandasamy, R., Effects of Heat and Mass Transfer on MHD Laminar Boundary Layer Flow over a Wedge with Suction or Injection, J. Energy, Heat Mass Transfer, 2001, vol. 32, pp. 167–178.

    Google Scholar 

  21. 21.

    Yih, K.A., Effect of Uniform Suction/Blowing on Heat Transfer of MHD Hiemenz Flow through Porous Media, Acta Mech., 1998, vol. 130, pp. 147–156.

    Article  MATH  Google Scholar 

  22. 22.

    Watanabe, T., Thermal Boundary Layer over a Wedge with Uniform Suction or Injection in Forced Flow, Acta Mech., 1990, vol. 83, pp. 119–126.

    Article  Google Scholar 

  23. 23.

    Chamkha, A.J. and Khaled, A.R.A., Similarity Solutions for Hydromagnetic Simultaneous Heat and Mass Transfer, Heat Mass Transfer, 2001, vol. 37, pp. 117–125.

    ADS  Article  Google Scholar 

  24. 24.

    Hossian, M.A., Viscous and Joule Heating Effects on MHD Free Convection Flow with Variable Plate Temperature, Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 3485–3492.

    Article  Google Scholar 

  25. 25.

    Hakiem, M.A., Mohammadeian, A.A., Kaheir, S.M., and Gorla, R.S., Joule Heating Effects on MHD Free Convection Flow of a Micropolar Fluid, Int. Comm. Heat Mass Transfer, 1999, vol. 26, pp. 219–226.

    Article  Google Scholar 

  26. 26.

    Kuo, Bor-Lih, Heat Transfer Analysis for the Falkner-SkanWedge Flow by the Differential Transformation Method, Int. J. Heat Mass Transfer, 2005, vol. 48, pp. 5036–5042.

    Article  MATH  Google Scholar 

  27. 27.

    Cheng, W.T. and Lin, H.T., Non-Similarity Solution and Correlation of Transient Heat Transfer in Laminar Boundary Layer Flowover a Wedge, Int. J. Eng. Sci., 2002, vol. 40, pp. 531–540.

    Article  Google Scholar 

  28. 28.

    Abdul-Kahar, Rosmila, Kandasamy, R., and Muhaimin, I., Scaling Group Transformation for Boundary-Layer Flow of a Nanofluid past a Porous Vertical Stretching Surface in the Presence of Chemical Reaction with Heat Radiation, Comp. Fluids, 2011, vol. 52, pp. 15–21.

    Article  MATH  Google Scholar 

  29. 29.

    Kandasamy, R., Loganathan, P., and Puvi Arasu, P., Scaling Group Transformation for MHD Boundary-Layer Flow of a Nanofluid past a Vertical Stretching Surface in the Presence of Suction/Injection, Nuclear Eng. Design, 2011, vol. 241, pp. 2053–2059.

    Article  Google Scholar 

  30. 30.

    Vajravelu, K., Prasad, K.V., Lee, Jinho, Lee, Changhoon, Pop, I., and Van Gorder, Robert A., Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids over a Stretching Surface, Int. J. Thermal Sci., 2011, vol. 50, pp. 843–851.

    Article  Google Scholar 

  31. 31.

    Rana, R. and Bhargava, R., Numerical Study of Heat Transfer Enhancement in Mixed Convection Flow along a Vertical Plate withHeat Source/Sink Utilizing Nanofluids, Comm. Nonlin. Sci. Num. Simul., 2011, vol. 16, pp. 4318–4334.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    Oztop, H.F. and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 1326–1336.

    Article  Google Scholar 

  33. 33.

    Sparrow, E.M. and Cess, R.D., Radiation Heat Transfer, Hemisphere,Washington, 1978.

    Google Scholar 

  34. 34.

    Raptis, A., Radiation and Free Convection Flow through a Porous Medium, Int. Comm. Heat Mass Transfer, 1998, vol. 25, pp. 289–295.

    Article  Google Scholar 

  35. 35.

    Brewster, M.Q., Thermal Radiative Transfer Properties, New York: Wiley, 1972.

    Google Scholar 

  36. 36.

    Aminossadati, S.M. and Ghasemi, B., Natural Convection Cooling of a Localized Heat Source at the Bottom of a Nanofluid-Filled Enclosure, Eur. J.Mech. B/Fluids, 2009, vol. 28, pp. 630–640.

    ADS  Article  MATH  Google Scholar 

  37. 37.

    Kafoussias, N.G. and Nanousis, N.D., Magnetohydrodynamic Laminar Boundary Layer Flow over a Wedge with Suction or Injection, Can. J. Phys., 1997, vol. 75, pp. 733–781.

    ADS  Article  Google Scholar 

  38. 38.

    Gill, S., A Process for the Step-by-Step Integration of Differential Equations in an Automatic Digital Computing Machine, Proc. Cambridge Philos. Soc., 1951, vol. 47, pp. 96–108.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    Lai, F.C. and Kulacki, F.A., The Influence of Lateral Mass Flux on Mixed Convection over Inclined Surface in Saturated Porous Media, ASME J. Heat Transfer, 1990, vol. 21, pp. 515–518.

    Article  Google Scholar 

  40. 40.

    Mukhopadhyay, S. and Layek, G.C., Effects of Thermal Radiation and Variable Fluid Viscosity on Free Convective Flow and Heat Transfer past a Porous Stretching Surface, Int. J. Heat and Mass Transfer, 2008, vol. 51, pp. 2167–2178.

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Siva Raman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siva Raman, N., Sivagnana Prabhu, K.K. & Kandasamy, R. Heat transfer effects on Hiemenz flow of nanofluid over a porous wedge sheet in the presence of suction/injection due to solar energy: Lie group transformation. J. Engin. Thermophys. 23, 66–78 (2014). https://doi.org/10.1134/S1810232814010081

Download citation

Keywords

  • Heat Transfer
  • Porous Medium
  • Thermal Radiation
  • Heat Mass Transfer
  • Mixed Convection