Skip to main content

Artificial neural network (ANN) approach for modeling and formulation of phenol adsorption onto activated carbon

Abstract

In this study, a three-layer feed-forward back propagation network with Levenberg-Marquardt (LM) learning algorithm was applied to predict adsorption of phenol onto activated carbon (AC). Batch experiments were carried out to obtain experimental data. The neural network was trained considering the amount of adsorbent, initial concentration of phenol, temperature, contact time and pH as input parameters and the final concentration of phenol as a desired parameter. Different transfer functions for hidden and output layers and different number of neurons in a hidden layer were tested to optimize the network structure. An empirical equation for final concentration of phenol was developed by using the weights of optimized network. Accuracy of the developed ANN model was also measured using statistical parameters, such as mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE) and correlation coefficient (R2). Results showed that MAE, MSE, RMSE, and R2 values of the ANN model were 0.1540, 0.0565, 0.2378, and 0.9998, respectively, which indicate high accuracy of the ANN model. In the equilibrium study, predicted results of the ANN model were also compared with experimental data and the results of other conventional isotherm models.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Canizares, P., Carmona, M., Baraza, O., Delgado, A., and Rodrigo, M.A., Adsorption Equilibrium of Phenol onto Chemically Modified Activated Carbon F400, J. Hazard. Mater., 2006, vol. B131, p. 243.

    Article  Google Scholar 

  2. 2.

    Mukherjee, S., Kumar, S., Misra, A.K., and Fan, M., Removal of Phenols from Water Environment by Activated Carbon, Bagasse Ash and Wood Charcoal, Chem. Eng. J., 2007, vol. 129, p. 133.

    Article  Google Scholar 

  3. 3.

    Li, H., Xu, M., Shi, Z., and He, B., Isotherm Analysis of Phenol Adsorption on Polymeric Adsorbents from Nonaqueous Solution, J. Colloid. Interf. Sci., 2004, vol. 271, p. 47.

    Article  Google Scholar 

  4. 4.

    Qadeer, R. and Rehan, A.H., A Study of the Adsorption of Phenol by Activated Carbon from Aqueous Solutions, Turk. J. Chem., 2002, vol. 26, p. 357.

    Google Scholar 

  5. 5.

    Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., and Mishra, I.M., Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics, Colloid. Surface, A, 2006, vol. 272, p. 89.

    Article  Google Scholar 

  6. 6.

    Terzyk, A.P., Further Insights into the Role of Carbon Surface Functionalities in the Mechanism of Phenol Adsorption, J. Colloid. Interf. Sci., 2003, vol. 268, p. 301.

    Article  Google Scholar 

  7. 7.

    Su, F., Lv, L., Hui, T.M., and Zhao, X.S., Phenol Adsorption on Zeolite-Templated Carbons with Different Structural and Surface Properties, Carbon, 2005, vol. 43, p. 1156.

    Article  Google Scholar 

  8. 8.

    Bahadir, K.K. and Abdurrahman, T., Continuous Electrochemical Treatment of Phenolic Wastewater in a Tubular Reactor, Water. Res., 2003, vol. 37, p. 1505.

    Article  Google Scholar 

  9. 9.

    Huang, J., Wang, X., Jin, Q., and Wang, Y.Y., Removal of Phenol from Aqueous Solution by Adsorption onto OTMAC-Modified Attapulgite, J. Environ. Manage., 2007, vol. 84, p. 229.

    Article  Google Scholar 

  10. 10.

    Tomaszewska, M., Mozia, S., and Morawski, W., Removal ofOrganic Matter by Coagulation Enhanced with Adsorption on PAC, Desalination, 2004, vol. 162, p. 79.

    Article  Google Scholar 

  11. 11.

    Canizares, P., Dominguez, J.A., Rodrigo, M.A., Villasenor, J., and Rodriguez, J., Effect of the Current Intensity in the Electrochemical Oxidation of Aqueous Phenol Wastes at an Activated Carbon and Steel Electrode, Ind. Eng. Chem. Res., 1999, vol. 38, p. 3779.

    Article  Google Scholar 

  12. 12.

    Jiang, H., Fang, Y., Fu, Y., and Guo, Q.X., Studies on the Extraction of Phenol in Wastewater, J. Hazard. Mater., 2003, vol. 101, p. 179.

    Article  Google Scholar 

  13. 13.

    Kumar, A., Kumar, Sh., Kumar, S., and Gupta, D.V., Adsorption of Phenol and 4-Nitrophenol on Granular Activated Carbon in Basal Salt Medium: Equilibriumand Kinetics, J. Hazard. Mater., 2007, vol. 147, p. 155.

    Article  Google Scholar 

  14. 14.

    Canizares, P., Martinez, F., Garcia-Gomez, J., and Rodrigo, M.A., Combined Electrooxidation and Assisted Electrochemical Coagulation of Aqueous Phenol Wastes, J. Appl. Electrochem., 2002, vol. 32, p. 1241.

    Article  Google Scholar 

  15. 15.

    Kujawski, W., Warszawski, A., Ratajczak, W., Porlmagebski, T., Capalmegea, W., and Ostrowska, I., Application of Pervaporation and Adsorption to the Phenol Removal from Wastewater, Sep. Purif. Technol., 2004, vol. 40, p. 123.

    Article  Google Scholar 

  16. 16.

    Mustafa, A.I., Alam, Md.S., Amin, Md.M., Bahadur, N.M., and Habib, Md.A., Phenol Removal from Aqueous System by Jute Stick, Pak, J. Anal. Environ. Chem., 2008, vol. 9, p. 92.

    Google Scholar 

  17. 17.

    Zhang, W.M., Zhang, Q.J., Pan, B.C. Lv, L., Pan, B.J., Xu, Z.W., Zhang, Q.X., Zhao, X.S., Du, W., and Zhang, Q.R., Modeling Synergistic Adsorption of Phenol/Aniline Mixtures in the Aqueous Phase onto Porous Polymer Adsorbents, J. Colloid. Interf. Sci., 2007, vol. 306, p. 216.

    Article  Google Scholar 

  18. 18.

    Lazarova, Z. and Boyadzhieva, S., Treatment of Phenol-Containing Aqueous Solutions by Membrane-Based Solvent Extraction in Coupled Ultrafiltration Modules, Chem. Eng. J., 2004, vol. 100, p. 129.

    Article  Google Scholar 

  19. 19.

    Sulaymon, A.H. and Ahmed, K.W., Competitive Adsorption of Furfural and Phenolic Compounds onto Activated Carbon in Fixed Bed Column, Environ. Sci. Technol., 2008, vol. 42, p. 392.

    ADS  Article  Google Scholar 

  20. 20.

    Ania, C.O., Parra, J.B., and Pis, J.J., Effect of Texture and Surface Chemistry on Adsorptive Capacities of Activated Carbons for Phenolic Compounds Removal, Fuel. Process. Technol., 2002, vol. 77, p. 337.

    Article  Google Scholar 

  21. 21.

    Liao, Q., Sun, J., and Gao, L., The Adsorption of Resorcinol from Water Using Multiwalled Carbon Nanotubes, Colloid. Surface, A, 2008, vol. 312, p. 160.

    Article  Google Scholar 

  22. 22.

    Ahmaruzzaman, M. and Sharma, D.K., Adsorption of Phenols from Wastewater, Colloid Interface Sci., 2005, vol. 287, p. 14.

    Article  Google Scholar 

  23. 23.

    Gupta, V.K., Ali, I., and Saini, V.K., Removal of Chlorophenols from Wastewater Using Red Mud: An Aluminum Industry Waste, Environ. Sci. Technol., 2004, vol. 38, p. 4012.

    ADS  Article  Google Scholar 

  24. 24.

    Otero, M., Rozada, F., Calvo, L.F., Garcia, A.I., and Moran, A., Elimination of Organic Water Pollutants Using Adsorbents Obtained from Sewage Sludge, Dyes. Pigments, 2003, vol. no. 57, p. 55.

    Google Scholar 

  25. 25.

    Batabyal, D., Sahu, A., and Chaudhuri, S.K., Kinetics and Mechanism of Removal of 2,4-Dimethyl Phenol from Aqueous Solutions with Coal Fly Ash, Separ. Technol., 1995, vol. 5, p. 179.

    Article  Google Scholar 

  26. 26.

    Nayak, P.S. and Singh, B.K., Removal of Phenol from Aqueous Solutions by Sorption on Low Cost Clay, Desalination, 2007, vol. 207, p. 71.

    Article  Google Scholar 

  27. 27.

    Adak, A., Pal, A., and Bandyopadhyay, M., Removal of Phenol from Water Environment by Surfactant-Modified Alumina through Adsolubilization, Colloid. Surface, A, 2006, vol. 277, p. 63.

    Article  Google Scholar 

  28. 28.

    Dutta, S., Parsons, S.A., Bhattacharjee, Ch., Bandhyopadhyay, S., and Datta, S., Development of an Artificial Neural Network Model for Adsorption and Photocatalysis of Reactive Dye on TiO2 Surface, Expert. Syst. Appl., 2010, vol. 37, p. 8634.

    Article  Google Scholar 

  29. 29.

    Langmuir, I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, vol. 40, p. 1361.

    Article  Google Scholar 

  30. 30.

    Freundlich, H., Over the Adsorption in Solution, J. Phys. Chem., 1906, vol. 57, p. 385.

    Google Scholar 

  31. 31.

    Yetilmezsoy, K., and Demirel, S., Artificial Neural Network (ANN) Approach for Modeling of Pb(II) Adsorption from Aqueous Solution by Antep Pistachio (Pistacia Vera L.) Shells, J. Hazard. Mater., 2008, vol. 153, p. 1288.

    Article  Google Scholar 

  32. 32.

    Cojocaru, C., Macoveanu, M., and Cretescu, I., Peat-Based Sorbents for the Removal of Oil Spills from Water Surface: Application of Artificial Neural Network Modeling, Colloid. Surface, A, 2011, vol. 384, p. 675.

    Article  Google Scholar 

  33. 33.

    Aghav, R.M., Kumar, S., and Mukherjee, N., Artificial Neural Network Modeling in Competitive Adsorption of Phenol and Resorcinol from Water Environment Using Some Carbonaceous Adsorbents, J. Hazard. Mater., 2011, vol. 188, p. 67.

    Article  Google Scholar 

  34. 34.

    Mousavi Dehghani, S.A., Vafaie Sefti, M., Ameri, A., and Shojai Kaveh, N., Minimum Miscibility Pressure Prediction Based on a Hybrid Neural Genetic Algorithm, Chem. Eng. Res. Des., 2008, vol. 86, p. 173.

    Article  Google Scholar 

  35. 35.

    Sozen, A., Arcaklioglu, E., and Ozalp, M., Formulation Based on Artificial Neural Network of Thermodynamic Properties of Ozone Friendly Refrigerant/Absorbent Couples, Appl. Therm. Eng., 2005, vol. 25, p. 1808.

    Article  Google Scholar 

  36. 36.

    Maier, H.R. and Dandy, G.C., Neural Networks for the Prediction and Forecasting of Water Resources Variables: A Review of Modeling. Issues and Applications, Environ. Modell. Softw., 2000, vol. 15, p. 101.

    Article  Google Scholar 

  37. 37.

    Saemi, M., Ahmadi, M., and Yazdian Varjani, A., Design of Neural Networks Using Genetic Algorithm for the Permeability Estimation of the Reservoir, J. Petrol. Sci. Eng., 2007, vol. 59, p. 97.

    Article  Google Scholar 

  38. 38.

    Senturka, H.B., Ozdesa, D., Gundogdua, A., Durana, C., and Soylak, M., Removal of Phenol from Aqueous Solutions by Adsorption onto Organomodified Tirebolu Bentonite: Equilibrium, Kinetic and Thermodynamic Study, J. Hazard. Mater., 2009, vol. 172, p. 353.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Shahryari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shahryari, Z., Sharifi, A. & Mohebbi, A. Artificial neural network (ANN) approach for modeling and formulation of phenol adsorption onto activated carbon. J. Engin. Thermophys. 22, 322–336 (2013). https://doi.org/10.1134/S181023281304005X

Download citation

Keywords

  • Activate Carbon
  • Root Mean Square Error
  • Artificial Neural Network
  • Hide Layer
  • Mean Square Error